
CSE 344
JUNE 20TH

RELATIONAL DATABASES AND SQLITE



ADMINISTRATIVE MINUTIAE
• Online Quizzes

• newgradiance.com
• Course token: 6F084FB3

• Discussion board (Piazza)
• Link on web site

• HW1
• We will create your gitlab repo today
• Will have HW1 in it (with instructions)

• Section
• Largely help with setup, but some practice with 

basic SQLite



REVIEW

What is a database?
• A collection of files storing related data

What is a DBMS?
• An application program that allows us to manage efficiently 

the collection of data files



EXAMPLE: YOUR NEW APP
What app should we build?

• disease finder app

What data do we need to store?
• diseases: name, category

• list of symptoms, list of treatments
• users: age, phone

• list of date, pulse, blood pressure, etc. 
• searches: date, list of words
• sessions: list of actions and times

• (not patient specific, can anonymize)



EXAMPLE: YOUR NEW APP
What operations do we need?

• search for disease matching symptoms
• search through disease database
• add search to search history

• list recent searches
• add new user
• user update:

• change patient phone
• add new pulse reading

• ...

What constraints can we put on the data?
• phone number must have 10 digits
• pulse must be >= 0
• ...



MORALS
Almost any application has lots of important data

Getting the data right is often half the battle
• what operations do you want to support?
• what data do you need for that?
• what constraints does the data have?

DBMSs
• make app development easier
• make apps more reliable
• make apps more efficient
• make apps more easily changeable



DATA MODELS
Recall our example: want to design a database of diseases:

• name, symptoms, tests, treatments, etc.

How should we describe this data precisely?

Data model = mathematical formalism (or conceptual way) for 
describing the data 



DATA MODELS
Relational 

• Data represented as relations
Semi-structured (Json/XML) 

• Data represented as trees
Key-value pairs

• Used by NoSQL systems
Graph
Object-oriented

Unit 2

Unit 3



DATABASES VS. 
DATA STRUCTURES
• What are some important distinctions between 

database systems, and data structure systems?



DATABASES VS. 
DATA STRUCTURES
• What are some important distinctions between 

database systems, and data structure systems?
• Structure: Java – concerned with “physical 

structure”. DBMS – concerned with “conceptual 
structure”



DATABASES VS. 
DATA STRUCTURES
• What are some important distinctions between 

database systems, and data structure systems?
• Structure: Java – concerned with “physical 

structure”. DBMS – concerned with “conceptual 
structure”

• Operations: Java – low level, DBMS – restricts 
allowable operations. Efficiency and data control



DATABASES VS. 
DATA STRUCTURES
• What are some important distinctions between 

database systems, and data structure systems?
• Structure: Java – concerned with “physical 

structure”. DBMS – concerned with “conceptual 
structure”

• Operations: Java – low level, DBMS – restricts 
allowable operations. Efficiency and data control

• Data constraints: Enforced typing allows us to 
maximize our memory usage and to be confident 
our operations are successful



3 ELEMENTS OF DATA 
MODELS
Instance

• The actual data
Schema

• Describe what data is being stored
Query language

• How to retrieve and manipulate data



RELATIONAL MODEL
Data is a collection of relations / tables:

mathematically, relation is a set of tuples
• each tuple (or entry) must have a value for each attribute
• order of the rows is unspecified

What is the schema for this table? 
Company(cname, country, no_employees, for_profit)

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes / 
fields

rows / 
tuples / 
records



THE RELATIONAL DATA MODEL
• Degree (arity) of a relation = #attributes
• Each attribute has a type. 

• Examples types:
• Strings: CHAR(20), VARCHAR(50), TEXT
• Numbers: INT, SMALLINT, FLOAT
• MONEY, DATETIME, …
• Few more that are vendor specific

• Statically and strictly enforced
• Independent of the implementation of the tables



TABLE 
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False



TABLE 
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Row major: as an array of objects

GizmoWorks
USA
20000
True

Canon
Japan
50000
True

Hitachi
Japan
30000
True

HappyCam
Canada
500
False



TABLE 
IMPLEMENTATION

How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Column major: as one array per attribute

GizmoWorks Canon Hitachi HappyCam

USA Japan Japan Canada

True True True False

20000 50000 30000 500



TABLE 
IMPLEMENTATION

How would you implement this?

Physical data independence
The logical definition of the data remains 
unchanged, even when we make changes to 
the actual implementation

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False



KEYS
Key = one (or multiple) attributes that uniquely identify a 
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False



KEYS
Key = one (or multiple) attributes that uniquely identify a 
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key



KEYS
Key = one (or multiple) attributes that uniquely identify a 
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key



KEYS
Key = one (or multiple) attributes that uniquely identify a 
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?



KEYS
Key = one (or multiple) attributes that uniquely identify a 
record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?
No: future updates to the
database may create duplicate
no_employees



MULTI-ATTRIBUTE 
KEY

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)



MULTIPLE KEYS

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN



FOREIGN KEY

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname, country, no_employees, for_profit)
Country(name, population)

Foreign key to
Country.nameCompany

Country



KEYS: SUMMARY
Key = columns that uniquely identify tuple

• Usually we underline
• A relation can have many keys, but only one can be chosen as 

primary key
Foreign key:

• Attribute(s) whose value is a key of a record in some other relation
• Foreign keys are sometimes called semantic pointer

(These are our first examples of constraints)



KEYS: EXAMPLE



RELATIONAL DATABASES
• Why relations?



RELATIONAL DATABASES
• Why relations?

• Preserves data – if two objects refer to the same common 
object, that objects data are consistent

• Saves space – no need to repeat relevant data if it can be 
relinked later



FIRST NORMAL FORM

All relations must be flat: we say that the 
relation is in first normal form

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y



FIRST NORMAL FORM

All relations must be flat: we say that the 
relation is in first normal form
E.g. we want to add products 
manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y



FIRST NORMAL FORM

All relations must be flat: we say that the 
relation is in first normal form
E.g. we want to add products 
manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy



FIRST NORMAL FORM

All relations must be flat: we say that the 
relation is in first normal form
E.g. we want to add products 
manufactured by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Non-1NF!



FIRST NORMAL FORM

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

pname price category manufacturer
SingleTouch 149.99 Photography Canon
AC 300 Appliance Hitachi
Gadget 200 Toy Canon

Company

Products

Now it’s in 1NF



DATA MODELS: 
SUMMARY
Schema + Instance + Query language
Relational model:

• Database = collection of tables
• Each table is flat: “first normal form”
• Key: may consists of multiple attributes
• Foreign key: “semantic pointer”
• Physical data independence



DEMO 1
• What operations should we expect SQLite (or any DBMS) 

to support just on what we know right now?



DEMO 1
• What operations should we expect SQLite (or any DBMS) 

to support just on what we know right now?
• create table
• insert into
• show rows (“select”)
• delete from 

• What sorts of inputs do these functions need to have?



DEMO 1
• What operations should we expect SQLite (or any DBMS) 

to support just on what we know right now?
• create table
• insert into
• select
• delete from 

• What sorts of inputs do these functions need to have?
• create table: table name, schema
• insert into: table name, tuple
• select: table name, attributes
• delete from: table name, condition



DEMO 1
• Common Syntax

• CREATE TABLE [tablename] 
([att1] [type1], 
[att2] [type2]…);

• INSERT INTO [tablename] VALUES ([val1],[val2]…);
• SELECT [att1],[att2],… FROM [tablename]

WHERE [condition]
• DELETE FROM [tablename]

WHERE [condition]



DEMO 1


