
CSE 344
JULY 25TH

MAP-REDUCE



ADMINISTRIVIA
• Midterm on Friday

• 4 problems
• similar content to previous exams

• (but no parallel DBs)
• cost formulas provided

• HW6 released Saturday
• due next Thursday



DISTRIBUTED QUERY 
PROCESSING
Data is horizontally partitioned on many servers

Operators may require data reshuffling
• move data to the machines that needs it
• this is the main new element in parallel query processing



HORIZONTAL DATA 
PARTITIONING

K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?



HORIZONTAL DATA 
PARTITIONING
Block Partition: 

• Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

Hash partitioned on attribute A:
• Tuple t goes to chunk i, where i = h(t.A) mod P + 1
• Recall: calling hash fn’s is free in this class

Range partitioned on attribute A:
• Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
• Tuple t goes to chunk i, if vi-1 < t.A < vi



PARALLEL EXECUTION 
OF RA OPERATORS:
SELECTION

Data: R(K,A,B,C)
Query: σA=c(R)

No change necessary
• Send query to every machine
• Each sends back its tuples that satisfy selection
• Result is the union of these

R1 R2 RP .  .  .



PARALLEL EXECUTION 
OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
R is block-partitioned or hash-partitioned on K

R1 R2 RP .  .  .

R1’ R2’ RP’
.  .  .

Reshuffle R
on attribute A

Run grouping 
on reshuffled

partitions



PARALLEL EXECUTION 
OF RA OPERATORS:
PARTITIONED HASH-JOIN
Data: R(K1, A, B), S(K2, B, C)
Query: R(K1, A, B) ⋈ S(K2, B, C)

• Initially, both R and S are partitioned on K1 and K2

R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally



PARALLEL JOIN ILLUSTRATION

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local 
Join



BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP.  .  .

R’1, S R’2, S R’P, S.  .  .

Broadcast S

S

Why would you want to do this?



EXAMPLE PARALLEL QUERY 
PLAN

SELECT * 
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)



PARALLEL QUERY 
PLAN

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



PARALLEL QUERY 
PLAN

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)



EXAMPLE PARALLEL 
QUERY PLAN

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all lines where 
hash(item) = 1

contains all orders and all lines where 
hash(item) = 2

contains all orders and all lines where 
hash(item) = 3

Order(oid, item, date), Line(item, …)



MOTIVATION
In principle, we covered how to parallelize relational 
database systems

In practice, it is useful to hide some of the lower level 
details of these computations

MapReduce is a programming model for such 
computation

First, let’s study how data is stored in such systems...



DISTRIBUTED FILE 
SYSTEM (DFS)
For very large files: TBs, PBs
Each file is partitioned into chunks, typically 64MB
Each chunk is replicated several times (≥3), on different 
racks, for fault tolerance
Implementations:

• Google’s DFS:  GFS, proprietary
• Hadoop’s DFS:  HDFS, open source



MAPREDUCE
Google: paper published 2004
Free variant: Hadoop

MapReduce = high-level programming model and 
implementation for large-scale parallel data processing



TYPICAL PROBLEMS 
SOLVED BY MR

Read a lot of data
Map: extract something you care about from each record
Shuffle and Sort
Reduce: aggregate, summarize, filter, transform
Write the results

Paradigm stays the same,
change map and reduce functions for 
different problems



DATA MODEL
Files!

A file = a bag of (key, value) pairs

A MapReduce program:
Input: a bag of (inputkey, value) pairs
Output: a bag of (outputkey, value) pairs



STEP 1: THE MAP
PHASE

User provides the MAP-function:
Input: (input key, value)
Output: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, 
value) pairs in the input file



STEP 2: THE REDUCE
PHASE

User provides the REDUCE function:
Input: (intermediate key, bag of values)
Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes 
the bag of values to the REDUCE function



EXAMPLE
Counting the number of occurrences of each word in a large 
collection of documents
Each Document

• The key = document id (did)
• The value = set of words (word)

22

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));



MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle



JOBS V.S. TASKS

A MapReduce Job
• One single “query”, e.g. count the words in all docs
• More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task
• A group of instantiations of the map-, or reduce-function, which are 

scheduled on a single worker



WORKERS
A worker is a process that executes one task at a time

Typically there is one worker per processor, hence 4 or 8 per 
machine



FAULT TOLERANCE
If one server fails once every year…
... then a job with 10,000 servers will fail in less than one hour

MapReduce handles fault tolerance by writing intermediate 
files to disk:

• Mappers write file to local disk
• Reducers read the files (=reshuffling); if the server fails, the 

reduce task is restarted on another server



MAPREDUCE
EXECUTION DETAILS

Map

(Shuffle)

Reduce

Data	not	
necessarily	local

Intermediate	data
goes	to	local		disk:
M	× R	files	(why?)

Output	to	disk,	
replicated	in	cluster

File	system:	GFS	
or	HDFS

Task

Task



Local	storage`

MAPREDUCE PHASES



IMPLEMENTATION
There is one master node
Master partitions input file into M splits, by key
Master assigns workers (=servers) to the M map tasks, keeps track 
of their progress
Workers write their output to local disk, partition into R regions
Master assigns workers to the R reduce tasks
Reduce workers read regions from the map workers’ local disks 



INTERESTING 
IMPLEMENTATION 
DETAILS
Worker failure:

Master pings workers periodically,

If down then reassigns the task to another worker



INTERESTING 
IMPLEMENTATION 
DETAILS
Backup tasks:
Straggler = a machine that takes unusually long time to 
complete one of the last tasks. E.g.:

• Bad disk forces frequent correctable errors (30MB/s à
1MB/s)

• The cluster scheduler has scheduled other tasks on that 
machine

Stragglers are a main reason for slowdown
Solution: pre-emptive backup execution of the last few 
remaining in-progress tasks



STRAGGLER EXAMPLE

time

Worker 3

Worker 2

Worker 1

Straggler

Backup execution

Killed

Killed



RELATIONAL 
OPERATORS IN 
MAPREDUCE
Given relations R(A,B) and S(B, C) compute:

Selection:  σA=123(R)

Group-by:  γA,sum(B)(R)

Join:  R ⋈ S



SELECTION 𝜎A=123(R)

map(String value):
if  value.A = 123:
EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
Emit(v);



SELECTION ΣA=123(R)

map(String value):
if  value.A = 123:
EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
Emit(v);

No need for reduce.
But need system hacking in Hadoop
to remove reduce from MapReduce



GROUP BY ΓA,SUM(B)(R)

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s = 0
for each v in values:
s = s + v

Emit(k, v);



JOIN
Two simple parallel join algorithms:

Partitioned hash-join (we saw it, will recap)

Broadcast join



PARTITIONED HASH-JOIN

R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned

R(A,B) ⋈B=C S(C,D)



PARTITIONED HASH-JOIN

map(Row value):
case value.relationName of
‘R’: EmitIntermediate(value.B, (‘R’, value));
‘S’: EmitIntermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
R = empty;  S = empty;
for each v in values:
case v.type of:

‘R’:   R.insert(v)
‘S’:   S.insert(v);

for v1 in R, for v2 in S
Emit(v1,v2);

R(A,B) ⋈B=C S(C,D)



BROADCAST JOIN

R1 R2 RP.  .  .

R’1, S R’2, S R’P, S.  .  .

Reshuffle R on R.B

Broadcast S

S

R(A,B) ⋈B=C S(C,D)



BROADCAST JOIN

init():
open(S); /* over the network */
hashTbl = new()
for each w in S: 
hashTbl.insert(w.C, w)

close(S);

map(Row v):
for each w in hashTbl.find(v.B)

Emit(v,w);
reduce(…):

/* empty: map-side only */

map should read
several records of R:
value = some group

of records

Read entire table S,
build a Hash Table

R(A,B) ⋈B=C S(C,D)



HW6
HW6 will ask you to write SQL queries and MapReduce tasks 
using Spark

You will get to “implement” SQL using MapReduce tasks
• Can you beat Spark’s implementation?



CONCLUSIONS
MapReduce offers a simple abstraction, and handles 
distribution + fault tolerance
Speedup/scaleup achieved by allocating dynamically map 
tasks and reduce tasks to available server.  However, skew is 
possible (e.g., one huge reduce task)
Writing intermediate results to disk is necessary for fault 
tolerance, but very slow.  
Spark replaces this with “Resilient Distributed Datasets” =
main memory + lineage


