
CSE 344
JULY 23RD

PARALLEL DATABASES

ADMINISTRIVIA
• HW5 due Wednesday

• Sign up for Amazon credits
• need for HW6. can take a while

• Midterm on Friday
• Practice exam on web site
• Videos from last 2 weeks all on web site
• No need to memorize cost formulas but

do need to understand them

WHY COMPUTE IN
PARALLEL?
Multi-cores:

• Most processors have multiple cores
• This trend will likely increase in the future

Big data: too large to fit in main memory
• Disk has more space but is slow
• Distributed query processing on 100x-1000x servers
• Widely available now using cloud services

PERFORMANCE METRICS
FOR PARALLEL DBS

Nodes = processors or computers

Speedup:
• More nodes, same data è higher speed

Scaleup:
• More nodes, more data è same speed

LINEAR V.S. NON-
LINEAR SPEEDUP

nodes (=P)

Speedup

×1 ×5 ×10 ×15

LINEAR V.S. NON-
LINEAR SCALEUP

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

WHY SUB-LINEAR
SPEEDUP AND SCALEUP?
Startup cost

• Cost of starting an operation on many nodes

Interference
• Contention for resources between nodes

Skew
• Slowest node becomes the bottleneck

ARCHITECTURES FOR
PARALLEL DATABASES
Shared memory

Shared disk

Shared nothing

SHARED MEMORY
Nodes share both RAM and disk
Dozens to hundreds of processors

Example: SQL Server runs on a single
machine and can leverage many threads
to speed up a query
check your HW3 query plans

Easy to use and program
Expensive to scale

• last remaining cash cows in the
hardware industry

Interconnection Network

P P P

Global Shared
Memory

D D D

SHARED DISK
All nodes access the same disks
Found in the largest "single-box"
(non-cluster) multiprocessors

Example: Oracle

No need to worry about shared
memory

Hard to scale: existing deployments
typically have fewer than 10 machines

Interconnection Network

P P P

D D D

M M M

SHARED NOTHING
Cluster of commodity machines on
high-speed network
Called "clusters" or "blade servers”
Each machine has its own memory
and disk: lowest contention.

Example: Google, Microsoft Cloud

Because all machines today have
many cores and many disks, shared-
nothing systems typically run many
"nodes” on a single physical
machine.

Easy to maintain and scale
Most difficult to administer and tune.

We discuss only Shared Nothing in class

Interconnection Network

P P P

D D D

M M M

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

APPROACHES TO
PARALLEL QUERY
EVALUATION
Inter-query parallelism

• Transaction per node
• Good for transactional workloads

Inter-operator parallelism
• Operator per node
• Good for analytical workloads

Intra-operator parallelism
• Operator on multiple nodes
• Good for both?

CSE 344 - 2017au 12We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

DISTRIBUTED QUERY
PROCESSING
Data is horizontally partitioned on many servers

Operators may require data reshuffling

First let’s discuss how to distribute data across multiple
nodes / servers

SINGLE NODE QUERY
PROCESSING (REVIEW)
Given relations R(A,B) and S(B, C), no indexes:

Selection: σA=123(R)
• Scan file R, select records with A=123

Group-by: γA,sum(B)(R)
• Scan file R, insert into a hash table using A as key
• When a new key is equal to an existing one, add B to the value

Join: R ⋈ S
• Scan file S, insert into a hash table using B as key
• Scan file R, probe the hash table using B

HORIZONTAL DATA
PARTITIONING

1 2 P . . .

Data: Servers:

K A B
… …

HORIZONTAL DATA
PARTITIONING

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

HORIZONTAL DATA
PARTITIONING
Block Partition:

• Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

Hash partitioned on attribute A:
• Tuple t goes to chunk i, where i = h(t.A) mod P + 1
• Recall: calling hash fn’s is free in this class

Range partitioned on attribute A:
• Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
• Tuple t goes to chunk i, if vi-1 < t.A ≤ vi

UNIFORM DATA V.S.
SKEWED DATA
Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition

Hash-partition
• On the key K
• On the attribute A

Range partition

Uniform

Uniform

May be skewed

Assuming good
hash function and
mode is not too large

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

Keep this in mind in the next few slides

PARALLEL EXECUTION
OF RA OPERATORS:
GROUPING
Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute group by if:

R is hash-partitioned on A ?

R is block-partitioned ?

R is hash-partitioned on K ?

PARALLEL EXECUTION
OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
R is block-partitioned or hash-partitioned on K

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Run grouping
on reshuffled

partitions

SPEEDUP AND
SCALEUP
Consider:

• Query: γA,sum(C)(R)
• Runtime: only consider Disk I/O costs

If we double the number of nodes P, what is the new running
time?

• Half (each server holds ½ as many chunks)
If we double both P and the size of R, what is the new
running time?

• Same (each server holds the same # of chunks)

But only if the data is without skew!

SKEWED DATA
• R(K,A,B,C)
• Informally: we say that the data is skewed if one server

holds much more data that the average
• E.g. we hash-partition on A, and some value of A occurs

many times
• Then the server holding that value will be skewed

PARALLEL EXECUTION
OF RA OPERATORS:
PARTITIONED HASH-JOIN
Data: R(K1, A, B), S(K2, B, C)
Query: R(K1, A, B) ⋈ S(K2, B, C)

• Initially, both R and S are partitioned on K1 and K2

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

PARALLEL JOIN ILLUSTRATION

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Broadcast S

S

Why would you want to do this?

EXAMPLE PARALLEL QUERY
PLAN

SELECT *
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

PARALLEL QUERY
PLAN

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

PARALLEL QUERY
PLAN

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

EXAMPLE PARALLEL
QUERY PLAN

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all lines where
hash(item) = 1

contains all orders and all lines where
hash(item) = 2

contains all orders and all lines where
hash(item) = 3

Order(oid, item, date), Line(item, …)

