
CSE 344
JULY 20TH

COST ESTIMATION

ADMINISTRIVIA
• Midterm in one week

• covers the material through today
• Relational data model & queries

• SQL, RA, Datalog

• NoSQL data model and queries
• Query optimization

• more details next week...

WHICH INDEXES?

The index selection problem
• Given a table, and a “workload” (big Java application with lots

of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:
• The database administrator DBA
• Semi-automatically, using a database administration tool

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

TWO TYPICAL KINDS
OF QUERIES

• Point queries
• (or equijoins)

• Hash table or B+ tree

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• B+ tree only

BASIC INDEX SELECTION
GUIDELINES

Consider queries in workload in order of importance

Consider relations accessed by query
• No benefit to indexing other relations

Look at WHERE clause and JOIN .. ON for possible
search key

Try to choose indexes that speed-up multiple queries

TO CLUSTER OR NOT
Range queries benefit mostly from clustering

Point indexes on keys do not need to be clustered
• will read 1 block whether the index is clustered or not

More generally, cost depends on percent of tuples returned...

Percentage of tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

COST ESTIMATION
To estimate the cost of a query plan, we need to consider:

• How each operator is implemented
• The cost of each operator

Let’s start with the basics...

COST PARAMETERS
Cost = Disk I/O + Network I/O + Memory I/O + CPU

• Disk I/O ⪼ Network I/O ⪼ Memory I/O ⪼ CPU
• We will focus on Disk I/O for now

• if the query plan involves disk I/O, that is likely to dominate cost
• for parallel, in-memory DBs, network costs usually dominate

COST PARAMETERS
Cost = Disk I/O + Network I/O + Memory I/O + CPU

• We will focus on Disk I/O for now

Parameters (a.k.a. statistics):
• B(R) = # of blocks for relation R
• T(R) = # of tuples in relation R
• V(R, A) = # of distinct values of attribute A appearing in relation R

When A is a key, V(R,A) = T(R)
When A is not a key, V(R,A) can be anything <= T(R)

COST PARAMETERS
Cost = Disk I/O + Network I/O + Memory I/O + CPU

• We will focus on Disk I/O for now

Parameters (a.k.a. statistics):
• B(R) = # of blocks for relation R
• T(R) = # of tuples in relation R
• V(R, A) = # of distinct values of attribute A appearing in relation R

DBMS collects statistics about base tables
must infer them for intermediate results

• (above information and more)
• allows DB to estimate things like “selectivity”...

SELECTIVITY FACTORS FOR CONDITIONS
A = c /* σA=c(R) */

• Selectivity = 1/V(R,A)

A < c /* σA<c(R)*/
• Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

c1 < A < c2 /* σc1<A<c2(R)*/
• Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

COST OF READING
DATA FROM DISK
Sequential scan for relation R costs B(R)

Index-based selection
• Estimate selectivity factor f (see previous slide)
• Clustered index: f * B(R)
• Unclustered index f * T(R)

Note: we ignore I/O cost for index pages

INDEX BASED
SELECTION

Example:

Table scan:
Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

R

σa=v

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

R

σa=v

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered:
• If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

R

σa=v

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

R

σa=v

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

R

σa=v

INDEX BASED
SELECTION

Example:

Table scan: B(R) = 2,000 I/Os
Index based selection:

• If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
• If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

Key Lesson: Don’t build unclustered indexes when V(R,a) is small !

R

σa=v

OUTLINE
Join operator algorithms

• One-pass algorithms (Sec. 15.2 and 15.3)
• Index-based algorithms (Sec 15.6)

Note about readings:
• In class, we discuss only algorithms for joins
• Other operators are easier: read the book

JOIN ALGORITHMS
Hash join

Nested loop join

Sort-merge join

HASH JOIN
Hash join: R ⋈ S

• Scan S into hash table in main memory
• Then scan R and join

Cost: B(R) + B(S)

Which relation to build the hash table on?
• (either can be done)

HASH JOIN EXAMPLE

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’

2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’

4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123

4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343

3 ‘GrpH’ 554

Two tuples
per page

HASH JOIN EXAMPLE
Patient Insurance

1 2

3 4

Patient
2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

HASH JOIN EXAMPLE
Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

HASH JOIN EXAMPLE
Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4

Output buffer

2 2

Write to disk or
pass to next

operator

HASH JOIN EXAMPLE
Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4

Output buffer

4 4

HASH JOIN EXAMPLE

28

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3

Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

NESTED LOOP JOINS
Tuple-based nested loop R ⋈ S
R is the outer relation, S is the inner relation

Cost: B(R) + T(R) B(S)
• multiple-pass since S is read many times
• factor of T(R) is very painful...

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

PAGE-AT-A-TIME
REFINEMENT

Cost: B(R) + B(R)B(S)
• only outer loops are disk I/O... inner-most loop is “free” (CPU)
• can speed this up even more if more memory is available

for each page of tuples r in R do
for each page of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

1 2

PAGE-AT-A-TIME
REFINEMENT

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

2 2

Input buffer for Insurance2 4

PAGE-AT-A-TIME
REFINEMENT

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

PAGE-AT-A-TIME
REFINEMENT

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance
Then repeat for next
page of Patient… until end of Patient

1 2

2 8

SORT-MERGE JOIN
Sort-merge join: R ⋈ S

• Scan R and sort (in main memory if possible)
• Scan S and sort (in main memory if possible)
• Merge R and S in one pass

Cost: B(R) + B(S) if sorting done in memory
• only possible if B(R) + B(S) <= M (memory size)
• however, usually no more than 4x this when on disk

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

1 1

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

SORT-MERGE JOIN
EXAMPLE

1 2

3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

3 3

Keep going until end of either relation

INDEX NESTED LOOP JOIN
R ⋈ S
Assume S has an index on the join attribute
Iterate over R. For each tuple, fetch corresponding tuple(s) from S

Cost:
• If index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,A))
• If index on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,A))
• If A is a key, then both are B(R) + T(R)

LOGICAL QUERY PLAN 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

LOGICAL QUERY PLAN 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

LOGICAL QUERY PLAN 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5

LOGICAL QUERY PLAN 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5
Very wrong!

Why?

LOGICAL QUERY PLAN 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5

T = 4

LOGICAL QUERY PLAN 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4 T= 5

T = 4

Different
estimate L

PHYSICAL PLAN 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

PHYSICAL PLAN 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100+100*100 = 10,100

Cost: B(R) + B(R)B(S)

PHYSICAL PLAN 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

PHYSICAL PLAN 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

PHYSICAL PLAN 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

PHYSICAL PLAN 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

PHYSICAL PLAN 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

PHYSICAL PLAN 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

QUERY OPTIMIZER
SUMMARY
Input: A logical query plan

Output: A good physical query plan

Basic query optimization algorithm
• Enumerate alternative plans (logical and physical)
• Compute estimated cost of each plan
• Choose plan with lowest cost

This is called cost-based optimization

