
CSE 344
JULY 18TH

INDEXING

ADMINISTRIVIA
• HW4 due today

• HW5 out already
• Asterix and SQL++

• Section tomorrow on Asterix + review
• bring laptop
• install Asterix (see HW5 instructions)

REVIEW (PT 1)
• Query evaluation

• process
• logical and physical query plans
• pipelining (using iterator interface)

QUERY EVALUATION STEPS

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

LOGICAL VS
PHYSICAL PLANS

Logical plans:
• Created by the parser from the input SQL text
• Expressed as a relational algebra tree
• Each SQL query has many possible logical plans

Physical plans:
• Goal is to choose an efficient implementation for each

operator in the RA tree
• Each logical plan has many possible physical plans

REVIEW (PT 2)
• Physical plan details

• join algorithms
• nested loop, hash join, sorted merge join

• file organization
• heap or sequential

• indexes (today)

• Eventual Goal: estimate cost of a query plan

JOIN ALGORITHMS
Logical operator: Supplier ⨝sid=sid Supply

Potential physical operators (more shortly...):
1. Nested Loop Join

• two nested loops to iterate through both sets of tuples
2. Sorted Merge join

• sort the tuples from each (on disk)
• pass through both sorted lists in order to find matches

3. Hash join
• put tuples from second into a hash table with key sid
• for each tuple from first, lookup sid in hash to get matches

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

DATA STORAGE

DBMSs store data in files
Most common organization is row-wise storage
On disk, a file is split into
blocks
Each block contains
a set of tuples

In the example, we have 4 blocks with 2 tuples each

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

DATA FILE TYPES
The data file can be one of:
Heap file

• Unsorted
Sequential file

• Sorted according to some attribute(s) called key

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

INDEX

An additional file, that allows fast access to records in the data file
given a search key
The index contains (key, value) pairs:

• The key = an attribute value (e.g., student ID or name)
• The value = a pointer to the record

Could have many indexes for one table

Most common types:
• hash index
• B+ tree index

B+ TREE INDEX BY
EXAMPLE

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

INDEX
CLASSIFICATION
Clustered/unclustered

• Clustered = records close in index are close in data
• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

• Unclustered = records close in index may be far in data
Primary/secondary

• Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

• Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table

SCANNING A DATA FILE
Hard disks are mechanical devices!

• Technology from the 60s; density much higher now
Read only at the rotation speed!
Consequence:
Sequential scan is MUCH FASTER than random reads

• Good: read blocks 1,2,3,4,5,…
• Bad: read blocks 2342, 11, 321,9, …

Rule of thumb:
• Random reading 1-2% of the file ≈ sequential scanning the entire file;

this is decreasing over time (because of increased density of disks)

Solid state (SSD): more expensive, but becoming less so

SUMMARY SO FAR
Index = enables direct access to records in another data file

• B+ tree / Hash table
• Clustered / unclustered

Data resides on (hard) disk
• Organized in blocks
• Sequential reads are efficient
• Random access less efficient
• Random read 1-2% of data worse than sequential

RECALL: PHYSICAL
DATA INDEPENDENCE

Applications are insulated from changes in
physical storage details

SQL and relational algebra facilitate physical
data independence

• Both languages input and output relations
• Can choose different implementations for operators

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Student(ID, fname, lname)
Takes(studentID, courseID)

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y’	in	Takes_courseID	where y’.courseID	>	300
y	=	fetch	the	Takes	record	pointed	to	by	y’
for x’	in Student_ID	where x’.ID	=	y.studentID

x	=	fetch	the	Student	record	pointed	to	by	x’
output	*

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Student(ID, fname, lname)
Takes(studentID, courseID)

EXAMPLE

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y’	in	Takes_courseID	where y’.courseID	>	300
y	=	fetch	the	Takes	record	pointed	to	by	y’
for x’	in Student_ID	where x’.ID	=	y.studentID

x	=	fetch	the	Student	record	pointed	to	by	x’
output	*

Assume the database has indexes on these attributes:
• Takes_courseID = index on Takes.courseID
• Student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Student(ID, fname, lname)
Takes(studentID, courseID)

Takes Student

σcourseID>300

⋈studentID=ID

Index	selection

CREATING INDEXES IN SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

What	does	this	mean?

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	INDEX	V5	ON V(N)

CREATE UNIQUE	INDEX V4	ON V(N)

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not	supported
in	SQLite

WHICH INDEXES?

The index selection problem
• Given a table, and a “workload” (big Java application with lots

of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:
• The database administrator DBA
• Semi-automatically, using a database administration tool

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

INDEX SELECTION:
WHICH SEARCH KEY
Make some attribute K a search key if the WHERE clause
contains:

• An exact match on K
• A range predicate on K
• A join on K

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

THE INDEX SELECTION
PROBLEM 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 2

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

THE INDEX SELECTION
PROBLEM 3

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

THE INDEX SELECTION
PROBLEM 4

33

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 344 - 2017au

THE INDEX SELECTION
PROBLEM 4

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

TWO TYPICAL KINDS
OF QUERIES

• Point queries
• What data structure should

be used for index?

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure should

be used for index?

TWO TYPICAL KINDS
OF QUERIES

• Point queries
• What data structure should

be used for index?
Hash tables

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND

year <= ?

• Range queries
• What data structure should

be used for index?
B+ Trees

BASIC INDEX SELECTION
GUIDELINES

Consider queries in workload in order of importance

Consider relations accessed by query
• No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

TO CLUSTER OR NOT
Range queries benefit mostly from clustering
Covering indexes do not need to be clustered: they work
equally well unclustered

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE R.K>? and R.K<?

