
CSE 344
JULY 11TH

SEMI-STRUCTURED DATA

ADMINISTRATIVE MINUTIAE
• HW3 due today

• HW4 out tomorrow (Datalog)

• WQ4 & WQ5 due Friday
• relational algebra & Datalog

NOSQL REVIEW

So far we have studied the relational data model
• Data is stored in tables(=relations)
• Queries are expressions in SQL, relational algebra, or Datalog

Traditional RDBMSs cannot scale to support modern web apps
• limited to one (big) machine
• scale web servers only until the DB becomes the bottleneck

NOSQL REVIEW

Scale up by spreading the data or requests across machines
• BUT consistency becomes much harder

• may need to give up on consistency checks involving multiple rows
• e.g., no checking of foreign key constraints
• can still check column non-null, greater than 0, etc.

• BUT joins become much harder if data is spread across machines
• may need give up on these
• (we will see how to do these in a couple weeks)

NOSQL REVIEW

Original NoSQL systems put scalability before everything else
• For OLTP workloads only: users read/write small amount of data

• huge database but each request looks at only a small part
• Simplest version efficiently supports only get/put of (key, value) pairs

• provide no ability to join
• provide no ability to select on anything but key!
• these are “distributed hash tables” not databases

• Other types support extensible columns or documents
• can efficiently select on anything in one row, but still no joins

• Scale data by partitioning across many servers
• primary key is hashed to choose server where row lives
• row-level consistency takes no inter-machine communication

NOSQL REVIEW

Two standard techniques (for distributed systems in general)
• partitioning: each row lives on only one machine

• good for OLTP
• consistency checks can be done on one machine

• replication: each row lives on all (or some) machines
• bad for OLTP: machines could have different versions of a row
• good for OLAP, assuming each machine has all the data
• have all the data needed for joins on the machine
• does not scale to large data, just large users / requests

• modern systems use both
• e.g., partition primary copy, replicate (stale) backups

NOSQL REVIEW

Newer NoSQL systems can support full feature set
• research systems (e.g., Asterix) do this now
• expect to see production systems in the future

NoSQL now sometimes used to simply mean non-relational data
• semi-structured data (documents)

WHERE WE ARE

Today: Semistructured data model
• Popular formats today: XML, JSon, protobuf

• book discusses XML (out of favor now)
• we will discuss JSon
• (protobuf is just a binary / condensed form of this)

• semi-structured data is more flexible for users
• no free lunch: lack of structure also has costs

• less work when writing
• more work when querying

JSON - OVERVIEW

JavaScript Object Notation = lightweight text-based open
standard designed for human-readable data interchange.
Interfaces in C, C++, Java, Python, Perl, etc.

The filename extension is .json.

(History: easiest data format within the browser)

We will emphasize JSon as semi-structured data

JSON SYNTAX
{ "book": [

{"id":"01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id":"07",

"language": "C++",

"edition": "second"

"author": ”E. Sepp”,

“price”: 22.25

}

]

}

JSON VS RELATIONAL
Relational data model

• Rigid flat structure (tables)
• Schema must be fixed in advanced
• Binary representation: good for performance, bad for exchange
• Query language based on Relational Calculus

Semistructured data model / JSon
• Flexible, nested structure (trees)
• Does not require predefined schema ("self describing”)
• Text representation: good for exchange, bad for performance
• Most common use: Language API; query languages emerging

JSON TERMINOLOGY
Data is represented in name/value pairs.

• Rows replaced by objects

Curly braces hold objects
• Each object is a list of name/value pairs separated by ,

(comma)
• Each pair is a name is followed by ':'(colon) followed by the

value

Square brackets hold arrays and values are separated by
,(comma).

JSON DATA
STRUCTURES
Collections of name-value pairs:

• {“name1”: value1, “name2”: value2, …}
• The “name” is also called a “key” (or “field”)

Ordered lists of values:
• [obj1, obj2, obj3, ...]

AVOID USING
DUPLICATE KEYS

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t

JSON DATATYPES
Number

String = double-quoted

Boolean = true or false

null empty

JSON SEMANTICS: A TREE !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

JSON DATA
JSon is self-describing
Schema elements become part of the data

• Relational schema: person(name,phone)
• In Json “person”, “name”, “phone” are part of the data, and

are repeated many times
Consequence: JSon is much more flexible (but wasteful)

JSon is also semistructured data
• (more soon...)

MAPPING RELATIONAL
DATA TO JSON

name name namephone phone phone
“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”, ”phone”:6343},
{“name”: “Dirk”, ”phone”:6383}
]

}

MAPPING RELATIONAL DATA TO JSON

Person

name phone
John 3634
Sue 6343

May inline foreign keys

Orders

personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{“name”: “John”,

“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,

“product”:”Gadget”}
]

},
{“name”: “Sue”,

“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}

JSON=SEMI-STRUCTURED
DATA (1/3)

Missing attributes:

Could represent in
a table with nulls

name phone
John 1234
Joe -

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Joe”}]

} no phone !

JSON=SEMI-STRUCTURED
DATA (2/3)
Repeated attributes

Impossible in
one table:

name phone
Mary 2345 3456 ???

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}

Two phones !

JSON=SEMI-STRUCTURED
DATA (3/3)
Attributes with different types in different objects

Nested collections
Heterogeneous collections

• Downside: you need to think about these cases in queries!

{“person”:
[{“name”:”Sue”, “phone”:3456},
{“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}

]
}

Structured
name !

QUERY LANGUAGES
FOR SS DATA
XML: XPath, XQuery (textbook)

• Supported inside many RDBMS (SQL Server, DB2, Oracle)
• Several standalone XPath/XQuery engines
• XPath widely used in the browser: CSS, JQuery

JSon:
• CouchBase: N1QL, may be replaced by AQL (better designed)
• Asterix: SQL++ (based on SQL)
• MongoDB: has a pattern-based language
• JSONiq http://www.jsoniq.org/

ASTERIXDB AND SQL++
AsterixDB

• NoSQL database system
• Developed at UC Irvine
• Now an Apache project
• Own query language: AsterixQL or AQL, based on XQuery

SQL++
• SQL-like syntax for AsterixQL

ASTERIX DATA MODEL
(ADM)
Objects:

• {“Name”: “Alice”, “age”: 40}
• Fields must be distinct:

{“Name”: “Alice”, “age”: 40, “age”:50}
Arrays:

• [1, 3, “Fred”, 2, 9]
• Note: can be heterogeneous

Multisets:
• {{1, 3, “Fred”, 2, 9}}

Can’t have
repeated fields

EXAMPLES
Try these queries:

SELECT x.age FROM [{'name': 'Alice', 'age': ['30', '50']}] x;

SELECT x.age FROM {{ {'name': 'Alice', 'age': ['30', '50']} }} x;

-- error
SELECT x.age FROM {'name': 'Alice', 'age': ['30', '50']} x;

Can only select from
multi-set or array

DATATYPES
Boolean, integer, float (various precisions), geometry (point,
line, …), date, time, etc

UUID = universally unique identifier
Use it as a system-generated unique key

NULL V.S. MISSING
{“age”: null} = the value NULL (like in SQL)
{“age”: missing} = { } = really missing

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3}] x;

{ "b": { "int64": 2 } }
{ }

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3, 'b':missing }] x;

{ "b": { "int64": 2 } }
{ }

SQL++ OVERVIEW
Data Definition Language (DDL): create a

• Dataverse
• Type
• Dataset
• Index

Data Manipulation Language (DML): select-from-where

DATAVERSE
A Dataverse is a Database

CREATE DATAVERSE lec344

CREATE DATAVERSE lec344 IF NOT EXISTS

DROP DATAVERSE lec344

DROP DATAVERSE lec344 IF EXISTS

USE lec344

TYPE
Defines the schema of a collection
It lists all required fields
Fields followed by ? are optional
CLOSED type = no other fields allowed
OPEN type = other fields allowed

Semi-structured data
• type defines the structured part
• rest is unstructured

CLOSED TYPES
USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
age: int,
email: string?

}

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- not OK:
{"Name": "Carol", "phone": "123456789"}

OPEN TYPES

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- Now it’s OK:
{"Name": "Carol", "phone": "123456789"}

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {

Name : string,
age: int,
email: string?

}

TYPES WITH NESTED
COLLECTIONS

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
phone: [string]

}

{"Name": "Carol", "phone": ["1234”]}
{"Name": ”David", "phone": [“2345”, “6789”]}
{"Name": ”Eric", "phone": []}

DATASETS
Dataset = relation
Must have a type

• Can be a trivial OPEN type
Must have a key

• Can also be a trivial one

DATASET WITH
EXISTING KEY

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
email: string?

}

USE lec344;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

DATASET WITH AUTO
GENERATED KEY

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

myKey: uuid,
Name : string,
email: string?

}

USE lec344;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)

PRIMARY KEY myKey AUTOGENERATED;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

Note: no myKey
since it will be
autogenerated

DISCUSSION OF NFNF
NFNF = Non First Normal Form
One or more attributes contain a collection
One extreme: a single row with a huge, nested collection
Better: multiple rows, reduced number of nested collections

EXAMPLE

country continent organization sea ... mountain desert

[{“name”:”Albania”,...},
{“name”:”Greece”,...},

...]
...

mondial.adm is totally semistructured:
{“mondial”: {“country”: [...], “continent”:[...], ..., “desert”:[...]}}

country.adm, sea.adm, mountain.adm are more structured

Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

INDEXES
Can declare an index on an attribute of a top-most collection

• used to improve query performance
• allows DBMS to perform certain lookups efficiently

• (more next week...)

Available:
• BTREE: good for equality and range queries

E.g. name=“Greece”; 20 < age and age < 40
• RTREE: good for 2-dimensional range queries

E.g. 20 < x and x < 40 and 10 < y and y < 50
• KEYWORD: good for substring search

INDEXES
USE lec344;
CREATE INDEX countryID

ON country(`-car_code`)
TYPE BTREE;

Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

BG Belgium ...

...

AL BG GR... NZ

USE lec344;
CREATE INDEX cityname

ON country(city.name)
TYPE BTREE;

Cannot index inside
a nested collection

