
CSE 344: Section 9
Transactions
May 24th, 2018

Administrivia

• HW	#8:	Use	Java	+	SQL	Server	to	make	application	for	booking	flights
• final	homework	of	the	quarter	(yay!)
• most	time-consuming	homework,	so	start	early

• Quiz	#7:	transactions	&	scheduling

Serializability

Conflict serializable is stricter thanserializable

I.e. Any schedule that is conflict serializable must be serializable.

Serializable

Conflict
Serializable

Serializability

Conflict serializable is stricter thanserializable

I.e. Any schedule that is conflict serializable must be
serializable.

Not all serializable schedules are conflict serializable:

t1 t2

W(A,	0)

W(A,	0)

R(A)

R(B)

Serializability

Checking for conflictserializability -> precedence graph and cycle checking

Serializability

S1: w1(Y); w2(Y); w1(X); w2(X); w3(X)

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)

Are these serializable?
Conflict serializable?

Serializability

S1: w1(Y); w2(Y); w1(X); w2(X); w3(X)

Conflict Serializable

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)

Serializable (but not conflict serializable)

2PL v.s. Strict 2PL

2PL:
● In every transaction, all lock

requests must precede allunlock
requests

● Ensure Conflict Serializability
● Might not be able to recover

(Dirty Read: Read on some write
that gets rolled back)

Strict 2PL:
● Every lock each transaction is

held until commit orabort
● Ensure Conflict Serializability
● Recoverable as each

transaction does not affect
others until commit/abort

2PL v.s. Strict 2PL

Isolation Level: ReadUncommitted

Write Locks? Strict 2PL

Read Locks? No (ImmediateRead)

Problem: Dirty-Read

Reading uncommitted data that can be rolled back

Isolation Level: ReadUncommitted

Example Transaction: T2 is reading value of A updated by T1’s write on A,
but T1 has not committedyet.

The value of A read by T2 might not even be in the
result.

Then T2’s action can be influenced bysuch
uncommitted data.

T1 T2

W(A)

R(A)

W(B)

Commit

R(B)

Commit

Isolation Level: ReadCommitted

Write Locks? Strict 2PL

Read Locks? Obtain before read, release after (No more dirty read)

Problem: Unrepeatable Read

The values of 2 reads on the same tuple can be different in the same
transaction

Isolation Level: ReadCommitted

Example Transaction: T1’s firstR(A) and T1’s second R(A) might have
different results.

Updated by T2’s W(A).

Isolation Level: Repeatable Read

Write Locks? Strict 2PL

Read Locks? Strict 2PL (No more unrepeatable read)

Same as Serializable if no insert or delete

Problem: Phantom Read

In the same transaction, some tuples appear sometimes and disappear other
times

Isolation Level: Repeatable Read

Isolation Level: Serializable

Not the same thing as Serializable schedule!!!

Write Locks: Strict 2PL

Read Locks: Strict2PL

Predicate Lock/Table Lock (NoPhantom)

Difference between Repeatable Read and Serializable is that serializable
schedule blocks inserts & deletes from another transaction

Isolation Level: Serializable

Predicate Lock Example:

In Transaction T, we have a statement:

SELECT * FROM People WHERE age > 18;

In this case, the transaction will grab a predicate lock that prevent inserting and
deleting tuples that can affect the predicate/statement.

In this case, the lock prevents inserting and deleting tuples with age > 18.

Isolation Level: Summary

Isolation	Level Dirty	Reads Nonrepeatable	Reads Phantom	Inserts

Read	Uncommitted Allowed Allowed Allowed

Read	Committed Not	Allowed Allowed Allowed

Repeatable	Read Not	Allowed Not	Allowed Allowed

Serializable Not	Allowed Not	Allowed Not	Allowed

