
CSE 344: Section 6
Parallel Databases
Midterm Review
May 3rd, 2018



Agenda for Today

This section:
● Quick touch up on parallel databases
● Midterm review



Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

● Block Partition
● Hash partitioned on attribute A
● Range partitioned on attribute A



Moving Data

We have a “network layer” to move tuples temporarily between nodes.

Networking is expensive so we need to be efficient (especially on joins and grouping).



Moving Data:
Partitioned Hash-Join Mechanism

We have p machines

We wish to join on some attribute 
(say R.x and S.y)

Call our hash function h(z)

R1, S1 R2, S2 Rp, Sp

R1’, S1’ R2’, S2’ Rp’, Sp’

...

...

Contains 
tuples s.t. 
h(R.x) = 
h(S.y) = red

Contains 
tuples s.t.
h(R.x) = h(S.y) 
= green

Contains
tuples s.t.
h(R.x) = h(S.y) 
= blue



Moving Data:
Broadcast Join (Map-Side Join) Mechanism 

We want to think about how 
to prevent sending all data 
through the network.

Take advantage of small 
datasets (meaning the whole 
dataset can fit into main 
memory)

R1 R2 Rp

R1’, S R2’, S Rp’, S

...

...

S

Contains all 
of S

Contains all 
of S

Contains all 
of S



Now What?

“Cool. I know how to split data up and move it around efficiently. What does that have 
to do with my queries?”



Now What?

“Cool. I know how to split data up and move it around efficiently. What does that have 
to do with my queries?”

Query
Single Node Plan

Multi-Node Plan



Parallel Query Plans

Know how to derive parallel plans though this pipeline.

Query
Single Node Plan

Multi-Node Plan



Parallel Query Plans

Know how to derive parallel plans from your single node plans.

● Which RA operations can you do without talking to other nodes?
● Which RA operations require moving tuples?
● Can we take advantage of how our data is already stored? (partitioning)

⋈ σ π



Parallel DB Practice!



We have a distributed database that hold the relations:
Drug(spec VARCHAR(255), compatibility INT)
Person(name VARCHAR(100) PK, compatibility INT)

We want to compute:
SELECT P.name, count(D.spec)
FROM Person AS P, Drug AS D
WHERE P.compatibility = D.compatibility
GROUP BY P.name;

Drug is block-partitioned
Person is hash-partitioned on compatibility [h(n)]
You have three nodes. Draw a parallel query plan.

*This is a pretty hard question*



ƔP.name, count(D.spec)(P ⋈ D)

Node 1 Node 2 Node 3

P ⋈ D ⋈ ⋈

ƔP.name,count(D.spec) Ɣ Ɣ

Hash [h(n)] Drug on compatibility 

Take advantage of:
1. Hash partitioning of Drug
2. The PK uniqueness of name


