1 Short answer

Assuming $B(R) = 1000$, $T(R) = 200,000$ and $V(R, A) = 500$, estimate the number of disk I/O's for an index-based selection for $\sigma_{A=55}(R)$ in each of the following cases:

i. (2 points) The system uses an unclustered index on $R.A$.

Number of I/O's:

i. ____________

ii. (2 points) The system uses a clustered index on $R.A$.

Number of I/O's:

ii. ____________

(2 points) The main advantage of a clustered index over an unclustered index is that the clustered index uses less space.

(i) ____________

True or false?

(2 points) The main reason why we cannot create too many indexes is because they will slow down updates to the database.

(j) ____________

True or false?
2 Cost Evaluation

Below, we consider possible execution plans for the following query, which returns the names of grocers that sell at least one very inexpensive ingredient:

```
SELECT gname
FROM Grocer G, Sells S
WHERE G.gid = S.gid AND S.price < 0.26
```

Assume the following statistics about the two relations:

<table>
<thead>
<tr>
<th>Table</th>
<th># tuples</th>
<th># blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grocer</td>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>Sells</td>
<td>10,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Assume the following statistics about the price column of S:

<table>
<thead>
<tr>
<th># distinct</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.01</td>
<td>2.50</td>
</tr>
</tbody>
</table>

At the bottom of this page, we provide some formulas from lecture that may be useful if you do not already have them in your own notes. The problems start on the next page.

Estimated cost of \(X \) JOIN \(Y \):

- Using a nested loop, the cost is \(B(X) + B(X) \ B(Y) \), where \(B(X) \) is # blocks in \(X \).
- Using a clustered index on \(Y(A) \), the cost is \(B(X) + T(X) \ B(Y) \times E \), where \(T(X) \) is # tuples in \(X \), and \(E \) is the selectivity of the condition \(A = c \).
- Using an unclustered index on \(Y(A) \), the cost is \(B(X) + T(X) \ T(Y) \times E \).

Estimated selectivity of conditions:

- For \(A = c \), the selectivity is \(1 / (\text{# distinct values of } A) \)
- For \(A < c \), the selectivity is \((c - \text{lowest value of } A) / (\text{highest - lowest value of } A) \)
1. The total cost of the plan below is ______________ disk block I/Os.

```
(on the fly)  \text{\textbf{\pi}} \text{ gname} \\
\text{(nested loop join)}  \text{\textbf{\Join} G.gid=S.gid} \\
\text{(scan write to T1)}  \text{\textbf{\sigma}} \text{ price < 0.26}  \text{ G (file scan)} \\
\text{(file scan)}  \text{ S} 
```

2. The total cost of the plan below is _____________ disk block I/Os.

(on the fly) \(\pi \) gname

(on the fly) \(\sigma \) price < 0.26

(indexed join) \(\bowtie \) G.gid=S.gid

(file scan) \(S \) \(G \) (file scan)

3. Circle the plan that is probably faster in this case:

 nested loop join (1) indexed join (2)