CSE 344: Section 5
NoSQL, SQL++

April 26th, 2018

Query workload types

OLTP (Online Transactional Processing)

e Atomic operations (one or multi entities). E-commerce, webapps.
e A small number of records per query - “Latest state”

OLAP (Online Analytical Processing)

e Analytics and data-warehousing. Reporting, decision support.
e Many records per query - “Aggregated stats” on “Bigger data”

Scaling methods

Scale up (vertically)

e Add more power to a single node

e diminishing returns
Scale out (horizontally)

e Cheap commodity hardware
e Management / coordination complexity

Partitioning & Replication

Partitioning
Or “Sharding”, “Distribution, ”Fragmentation”

e Motivation:

o BIG data - need to split up! (e.g. PB-level)

o Availability: better write (and single-record read) throughput
e Challenge: fair share of requests

o Choice of partitioning schemes
o “Justin Bieber Effect” -> “hot spots”

Partitioning & Replication

Replication

e Motivation:

o Fault-tolerance / durability: power / disk failures

o Keep data close to the user (geographically)

o Availability: better read (and potentially write) throughput
e Challenge: keeping data in sync

o E.g. write to a leader and then propagate

o Choice of consistency models

e No clear definition :\

APACHE 4%4
Non-relational HBHSE <« Cassandra

O

@)
(@)
(@)

e Motivation

O

O

The need to scale

Lots of web apps mostly OLTP queries :OO Ne04j e redis

+ scalability, + availability, + flexibility

l |
- consistency, - OLAP performance ‘:

Open source implementations CouchDB

sriak

‘ mongoDB
HYPERTABLE«

Q-

m Read/write intensive
m but fewer joins & aggregates

Data Models

e Key-value stores

o Opaque value
o e.g., Project Voldemort, Memcached

e Document stores
o “key-object”

o e.g., SimpleDB, CouchDB, MongoDB, AsterixDB @ @
: o ®
e Extensible Record Stores R A ® O
o ‘“column groups” @-.’.’ e) 0 e
o e.g., BigTable, HBase, Cassandra, PNUTS ® 00 O
e Graph

o E.g.Neo4j

JSON and Semi-Structured Data

JSON, XML, Protobuf (also an IDL)

Familiar - as your HTTP request/response

{“person”:
e Good for data exchange ”Z"gfess""ary
e Maps to OOP paradigm {'street”“Maple”,
“gi?yi’?“}géattle”}},
Also - as a database file {‘name”: “John’”,

“address”: “Thailand”,
“phone”:2345678}}

e Flexible tree-structured model]
e (Query langs: XQuery, XPath, etc. }

Asterixecs

AsterixDB, SQLA++

e A semistructured NoSQL style data model (ADM)
e Extends JSON with object database i1deas

Know the following:

e DDL: type (open vs. closed), data types (e.g. multiset). Creating an index.
e DML: Heterogenous Collections, Nesting / Unnesting.
e (Asterix stores data as flattened tables behind the scenes)

What 1s SQL++?

Just like SQL but parsed for processing JSON data

SQL++ has keywords to handle collections of data (i.e. non-flat data)

Motivation for SQL++

Why SQL++? Why not some other query language?
People are used to/like specifying data through SQL syntax

SQL-like language enforces idea of physical data independence

Useful Keywords/Syntax for HW

is array(..) ---—-- > checks if value is an array

split (s, d) ---- > splits string s on delimiter d

[.] ———-- > explicitly construct array

(CASE WHEN .. THEN .. ELSE .. END) ----- > combine with “i s _array(..) ”
MISSING ----- > reserved keyword like “NULL”

QR > backtick needed for accessing keys with names containing “-”

