
CSE 344
APRIL 9TH – DATALOG

ADMINISTRATIVE MINUTIAE
• Midterm exam

• Piazza poll
• OQ 2/3 Due Friday
• HW2 Due Wednesday
• HW3 Out Wednesday

RELATIONAL
ALGEBRA
Set-at-a-time algebra, which manipulates relations
In SQL we say what we want
In RA we can express how to get it
Every DBMS implementations converts a SQL query to RA in
order to execute it
An RA expression is called a query plan

BASICS

• Relations and attributes
• Functions that are applied to relations

– Return relations
– Can be composed together
– Often displayed using a tree rather than linearly
– Use Greek symbols: σ, p, δ, etc

JOIN SUMMARY
Theta-join: R ⨝q S = σq (R × S)

• Join of R and S with a join condition θ
• Cross-product followed by selection θ
• No projection

Equijoin: R ⨝θ S = σθ (R × S)
• Join condition θ consists only of equalities
• No projection

Natural join: R ⨝S = πA (σθ (R × S))
• Equality on all fields with same name in R and in S
• Projection πA drops all redundant attributes

MORE JOINS
Outer join

• Include tuples with no matches in the output
• Use NULL values for missing attributes
• Does not eliminate duplicate columns

Variants
• Left outer join
• Right outer join
• Full outer join

SOME EXAMPLES
Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10

πsname(Supplier ⨝Supply ⨝ (σpsize>10 (Part))

Name of supplier of red parts or parts with size greater than 10
πsname(Supplier ⨝Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))
πsname(Supplier ⨝Supply ⨝ (σ psize>10 ∨ pcolor=‘red’ (Part)))

Can be represented as trees as well

REPRESENTING RA QUERIES AS
TREES

πsname(Supplier ⨝Supply ⨝ (σpsize>10 (Part))

Part

Supplyσpsize>10

πsname

Answer

Supplier

RELATIONAL ALGEBRA OPERATORS
Union ∪, intersection ∩, difference -
Selection σ
Projection π
Cartesian product X, join ⨝
(Rename ρ)
Duplicate elimination δ
Grouping and aggregation ɣ
Sorting 𝛕

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

EXTENDED RA:
OPERATORS ON BAGS
Duplicate elimination d
Grouping g

• Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

Sorting t

• Takes in a relation, a list of attributes to sort on, and
an order. Returns a new relation.

USING EXTENDED RA
OPERATORS

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

TYPICAL PLAN FOR A
QUERY (1/2)

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN
Query

Answer
SELECT fields
FROM R, S, …
WHERE condition

TYPICAL PLAN FOR A QUERY (1/2)

πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

HOW ABOUT
SUBQUERIES?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SUMMARY OF RA AND
SQL
SQL = a declarative language where we say what data we
want to retrieve
RA = an algebra where we say how we want to retrieve the
data
Theorem: SQL and RA can express exactly the same class of
queries

RDBMS translate SQL à RA, then optimize RA

RELATIONAL ALGEBRA
TAKEAWAYS
• Be able to get a query write the relational

algebra expression equivalent to it
• Given a relational algebra expression,

write the equivalent query
• Understand what each are trying to get

semantically

SUMMARY OF RA AND
SQL
SQL (and RA) cannot express ALL queries
that we could write in, say, Java
Example:

• Parent(p,c): find all descendants of ‘Alice’
• No RA query can compute this!
• This is called a recursive query

Datalog is an extension that can compute
recursive queries

WHAT IS DATALOG?
Another query language for relational model

• Designed in the 80’s
• Simple, concise, elegant
• Extends relational queries with recursion

Relies on a logical framework for ”record” selection

DATALOG: FACTS AND
RULES

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Schema

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

DATALOG: FACTS AND
RULES

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

DATALOG:
TERMINOLOGY

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

bodyhead

atom atom atom (aka subgoal)

f, l = head variables
x,y,z= existential variables

MORE DATALOG
TERMINOLOGY

Ri(argsi) called an atom, or a relational predicate
Ri(argsi) evaluates to true when relation Ri contains
the tuple described by argsi.

• Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true
In addition we can also have arithmetic predicates

• Example: z > ‘1940’.
Book uses AND instead of ,

Q(args) :- R1(args), R2(args),

Q(args) :- R1(args) AND R2(args)

SEMANTICS OF A SINGLE RULE
Meaning of a datalog rule = a logical statement !

Q1(y) :- Movie(x,y,z), z=‘1940’.

• For all x, y, z: if (x,y,z) ∈ Movies and z = ‘1940’
then y is in Q1 (i.e. is part of the answer)

• ∀x∀y∀z [(Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]
• Logically equivalent:
∀y [(∃x∃z Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]

• Thus, non-head variables are called "existential
variables”

• We want the smallest set Q1 with this property (why?)

DATALOG PROGRAM
A datalog program consists of several rules
Importantly, rules may be recursive!
Usually there is one distinguished predicate that’s the output
We will show an example first, then give the general
semantics.

EXAMPLE

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

5

EXAMPLE

1

2

4

3

R encodes a graph

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

EXAMPLE

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

5
R encodes a graph

What does
it compute?

EXAMPLE

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=
Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5
R encodes a graph

Second rule
generates nothing
(because T is empty)

First rule generates this

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

EXAMPLE

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

New facts

First rule generates this

Second rule generates this

EXAMPLE

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

New fact

First rule

Second
rule

Both rules

EXAMPLE

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

No
new
facts.
DONE

Fourth
iteration
T =
(same)

DATALOG SEMANTICS
Fixpoint semantics
Start:

IDB0 = empty relations
t = 0

Repeat:
IDBt+1 = Compute Rules(EDB, IDBt)
t = t+1

Until IDBt = IDBt-1

Remark: since rules are monotone:
∅ = IDB0⊆IDB1⊆ IDB2⊆ ...
It follows that a datalog program w/o functions (+, *, ...)
always terminates. (Why? In what time?)

DATALOG SEMANTICS
Minimal model semantics:
Return the IDB that

1) For every rule,
∀vars [(Body(EDB,IDB) ⇒ Head(IDB)]

2) Is the smallest IDB satisfying (1)

Theorem: there exists a smallest IDB satisfying (1)

DATALOG SEMANTICS
The fixpoint semantics tells us how to compute a datalog
query

The minimal model semantics is more declarative: only says
what we get

The two semantics are equivalent
meaning: you get the same thing

THREE EQUIVALENT
PROGRAMS

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

1

2

4

3

1 2
2 1
2 3

1 4

3 4
4 5

R=

5
R encodes a graph

SAFE DATALOG RULES

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

SAFE DATALOG RULES

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

SAFE DATALOG RULES

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not

parent of y)

SAFE DATALOG RULES

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

A datalog rule is safe if every variable appears
in some positive relational atom

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not

parent of y)

