
CSE 344
APRIL 6TH – RELATIONAL ALGEBRA

ASSORTED MINUTIAE
• HW2 out (Due Wednesday)

• git pull upstream master
• OQ1 due tonight
• OQ2/3 Out

• Both due next Friday
• Azure accounts will be created over the

weekend
• Needed for HW3

RELATIONAL
ALGEBRA
• Remember from last week

• SQL queries are combinations of functions on
tables

• Each one receives tables as input and has a
table as an output

RELATIONAL
ALGEBRA
Set-at-a-time algebra, which manipulates relations
In SQL we say what we want
In RA we can express how to get it
Every DBMS implementations converts a SQL query to RA in
order to execute it
An RA expression is called a query plan

BASICS

• Relations and attributes
• Functions that are applied to relations

– Return relations
– Can be composed together
– Often displayed using a tree rather than linearly
– Use Greek symbols: σ, p, δ, etc

SETS V.S. BAGS
Sets: {a,b,c}, {a,d,e,f}, { }, . . .
Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
Set semantics = standard Relational Algebra
Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

RELATIONAL ALGEBRA OPERATORS
Union ∪, intersection ∩, difference -
Selection σ
Projection π
Cartesian product X, join ⨝
(Rename ρ)
Duplicate elimination δ
Grouping and aggregation ɣ
Sorting 𝛕

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

UNION AND DIFFERENCE

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

WHAT ABOUT INTERSECTION ?

Derived operator using minus

Derived using join

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

SELECTION
Returns all tuples which satisfy a condition

Examples
• σSalary > 40000 (Employee)
• σname = “Smith” (Employee)

The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

σc(R)

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

PROJECTION
Eliminates columns

Example: project social-security number and names:
• πSSN, Name (Employee) à Answer(SSN, Name)

π A1,…,An (R)

Different semantics over sets or bags! Why?

π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

Which is more efficient?

COMPOSING RA
OPERATORS

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))

zip disease
98125 heart
98120 heart

CARTESIAN PRODUCT
Each tuple in R1 with each tuple in R2

Rare in practice; mainly used to express
joins

R1 × R2

Name SSN
John 999999999
Tony 777777777

Employee

EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee X Dependent

Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

CROSS-PRODUCT
EXAMPLE

NATURAL JOIN

Meaning: R1⨝R2 = PA(sq (R1 × R2))

Where:
• Selection sq checks equality of all common attributes (i.e.,

attributes with same names)
• Projection PA eliminates duplicate common attributes

R1 ⨝R2

NATURAL JOIN EXAMPLE
A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
PABC(sR.B=S.B(R × S))

NATURAL JOIN
EXAMPLE 2

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

THETA JOIN
A join that involves a predicate

Here q can be any condition
No projection in this case!
For our voters/patients example:

R1 ⨝q R2 = sq (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

EQUIJOIN
A theta join where q is an equality predicate

By far the most used variant of join in practice
What is the relationship with natural join?

R1 ⨝q R2 = sq (R1 × R2)

EQUIJOIN EXAMPLE

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

JOIN SUMMARY
Theta-join: R ⨝q S = σq (R × S)

• Join of R and S with a join condition θ
• Cross-product followed by selection θ
• No projection

Equijoin: R ⨝θ S = σθ (R × S)
• Join condition θ consists only of equalities
• No projection

Natural join: R ⨝S = πA (σθ (R × S))
• Equality on all fields with same name in R and in S
• Projection πA drops all redundant attributes

SO WHICH JOIN IS IT ?
When we write R ⨝S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

MORE JOINS
Outer join

• Include tuples with no matches in the output
• Use NULL values for missing attributes
• Does not eliminate duplicate columns

Variants
• Left outer join
• Right outer join
• Full outer join

OUTER JOIN
EXAMPLE

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋊ J

P.age P.zip P.diseas
e J.job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null null null

AnnonJob J

job age zip
lawyer 54 98125
cashier 20 98120

SOME EXAMPLES
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
πsname(Supplier ⨝Supply ⨝(σpsize>10 (Part))

Name of supplier of red parts or parts with size greater than 10
πsname(Supplier ⨝Supply ⨝(σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))
πsname(Supplier ⨝Supply ⨝(σ psize>10 ∨ pcolor=‘red’ (Part)))

Can be represented as trees as well

REPRESENTING RA QUERIES AS
TREESSupplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(Supplier ⨝Supply ⨝(σpsize>10 (Part))

Part

Supplyσpsize>10

πsname

Answer

Supplier

RELATIONAL ALGEBRA OPERATORS
Union ∪, intersection ∩, difference -
Selection σ
Projection π
Cartesian product X, join ⨝
(Rename ρ)
Duplicate elimination δ
Grouping and aggregation ɣ
Sorting 𝛕

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

EXTENDED RA:
OPERATORS ON BAGS
Duplicate elimination d

• Turns bags into sets (no other arguments)
Grouping g

• Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

• Can also perform renames at the same time
Sorting t

• Takes in a relation, a list of attributes to sort on, and
an order. Returns a new relation.

USING EXTENDED RA
OPERATORS

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING count(*) > 100

T1, T2 = temporary tables sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

T1(city,q,c)

T2(city,q,c)

TYPICAL PLAN FOR A
QUERY (1/2)

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN
Query

Answer
SELECT fields
FROM R, S, …
WHERE condition

TYPICAL PLAN FOR A QUERY (1/2)

πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

HOW ABOUT
SUBQUERIES?

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

HOW ABOUT
SUBQUERIES?

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

HOW ABOUT
SUBQUERIES?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SUMMARY OF RA AND
SQL
SQL = a declarative language where we say what data we
want to retrieve
RA = an algebra where we say how we want to retrieve the
data
Theorem: SQL and RA can express exactly the same class of
queries

RDBMS translate SQL à RA, then optimize RA

SUMMARY OF RA AND
SQL
SQL (and RA) cannot express ALL queries
that we could write in, say, Java
Example:

• Parent(p,c): find all descendants of ‘Alice’
• No RA query can compute this!
• This is called a recursive query

Next lecture: Datalog is an extension that
can compute recursive queries

