
CSE 344
APRIL 4TH – SUBQUERIES

ADMINISTRIVIA
• HW1 Due Tonight (11:30)

• Don’t forget to git add and tag your assignment
• Check on gitlab after submitting
• Use AS for aliasing

• HW2 Out Tonight
• Due next Wednesday (April 11)
• Contains AWS instructions

• OQ1 Due Friday (11:00)
• OQ2 Out Due April 11

QUERY COMPLEXITY
• As the information we want gets more complex,

we need to utilize more elements of the RDBMS
• Multi-table queries -> join
• Data statistics -> grouping

• Whatever you can do in SQL, you should
• Optimization
• Basic analysis tools

• Sum, min, average, max, count

SEMANTICS OF SQL
WITH GROUP-BY

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics
2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

SUBQUERIES

A subquery is a SQL query nested inside a larger
query
Such inner-outer queries are called nested queries
A subquery may occur in:

• A SELECT clause
• A FROM clause
• A WHERE clause

Rule of thumb: avoid nested queries when possible
• But sometimes it’s impossible to avoid, as we will see

SUBQUERIES…
• Can return a single value to be included in a

SELECT clause
• Can return a relation to be included in the FROM

clause, aliased using a tuple variable
• Can return a single value to be compared with

another value in a WHERE clause
• Can return a relation to be used in the WHERE or

HAVING clause under an existential quantifier

1. SUBQUERIES IN
SELECT

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(and SQLite simply ignores the extra values…)

“correlated
subquery”

1. SUBQUERIES IN SELECT
Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

=

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Product (pname, price, cid)
Company (cid, cname, city)

We have
“unnested”
the query

1. SUBQUERIES IN SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

Better: we can
unnest using a GROUP
BY

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN SELECT
But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

1. SUBQUERIES IN SELECT
But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

No! Different results if a company
has no products

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

2. SUBQUERIES IN FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Try to unnest this query !

Product (pname, price, cid)
Company (cid, cname, city)

Side note: This is not a correlated
subquery. (why?)

2. SUBQUERIES IN FROM

Sometimes we need to compute an intermediate table only to
use it later in a SELECT-FROM-WHERE
Option 1: use a subquery in the FROM clause
Option 2: use the WITH clause

2. SUBQUERIES IN FROM

SELECT X.pname
FROM (SELECT *

FROM Product AS Y
WHERE price > 20) as X

WHERE X.price < 500

Product (pname, price, cid)
Company (cid, cname, city)

=
WITH myTable AS (SELECT * FROM Product AS Y WHERE price > 20)
SELECT X.pname
FROM myTable as X
WHERE X.price < 500

A subquery whose
result we called myTable

3. SUBQUERIES IN WHERE

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Product (pname, price, cid)
Company (cid, cname, city)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Not supported
in sqlite

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential quantifiers are easy!

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

3. SUBQUERIES IN WHERE

same as:

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

Universal quantifiers are hard!

same as:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

1. Find the other companies that make some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Using EXISTS:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

3. SUBQUERIES IN WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 >= ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Using ALL:

Universal quantifiers

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

QUESTION FOR
DATABASE THEORY FANS
AND THEIR FRIENDS

Can we unnest the universal quantifier
query?

We need to first discuss the concept of
monotonicity

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

Product (pname, price, cid)
Company (cid, cname, city)

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon

Camera Lodtz

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

So far it looks monotone...

MONOTONE QUERIES
Definition A query Q is monotone if:

• Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product (pname, price, cid)
Company (cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Qcid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!

MONOTONE QUERIES
Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

MONOTONE QUERIES
Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove
any tuples from the answer
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

MONOTONE QUERIES
The query:

is not monotone

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company (cid, cname, city)

MONOTONE QUERIES
The query:

is not monotone

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

MONOTONE QUERIES
The query:

is not monotone

Consequence: If a query is not monotonic, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company (cid, cname, city)

Find all companies s.t. all their products have price < 200

GROUP BY V.S.
NESTED QUERIES
SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
AND y.price > 1)

AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(pid, product, quantity, price)

MORE UNNESTING

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

MORE UNNESTING

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)

FROM Wrote
WHERE Author.login=Wrote.login)

>= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

MORE UNNESTING

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

FINDING WITNESSES

Product (pname, price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

FINDING WITNESSES

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES
To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname, price, cid)
Company (cid, cname, city)

WITH CityMax AS
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;

FINDING WITNESSES
To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES

Or we can use a subquery in where clause

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
and v.price >= ALL (SELECT y.price

FROM Company x, Product y
WHERE u.city=x.city
and x.cid=y.cid);

Product (pname, price, cid)
Company (cid, cname, city)

FINDING WITNESSES

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname, price, cid)
Company (cid, cname, city)

