
CSE 344
APRIL 2ND – GROUPING/AGGREGATION

ADMINISTRIVIA
• HW1 Due Wednesday (11:30)

• Don’t forget to git add and tag your assignment
• Check on gitlab after submitting

• OQ1 Due Friday (11:00)
• A few of you still need to enroll

QUERY COMPLEXITY
• As the information we want gets more complex,

we need to utilize more elements of the RDBMS
• Multi-table queries -> join
• Data statistics -> grouping

QUERY COMPLEXITY
• As the information we want gets more complex,

we need to utilize more elements of the RDBMS
• Multi-table queries -> join
• Data statistics -> grouping

• Whatever you can do in SQL, you should
• Optimization
• Basic analysis tools

• Sum, min, average, max, count

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

Find total quantities for all sales over $1, by product.

GROUPING AND AGGREGATION

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

OTHER EXAMPLES

SELECT product,
sum(quantity) AS SumQuantity,
max(price) AS MaxPrice

FROM Purchase
GROUP BY product

What does
it return?

SELECT product, count(*)
FROM Purchase
GROUP BY product

SELECT month, count(*)
FROM Purchase
GROUP BY month

Compare these
two queries:

NEED TO BE
CAREFUL…

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

NEED TO BE
CAREFUL…

SELECT product, quantity
FROM Purchase
GROUP BY product
-- what does this mean?

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT product,
max(quantity)

FROM Purchase
GROUP BY product

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be
either a GROUP-BY attribute, or an aggregate

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

How is this query processed?

Find total quantities for all sales over $1, by product.

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

GROUPING AND
AGGREGATION
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Find total quantities for all sales over $1, by product.

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
GROUP BY product

Do these queries return the same number of rows? Why?

Empty groups are removed, hence
first query may return fewer groups

GROUPING AND
AGGREGATION

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
grouped attributes and aggregates.

FWGS
TM

1,2: FROM, WHERE

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

WHERE	price	>	1

3,4. GROUPING, SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

ORDERING RESULTS

SELECT product, sum(price*quantity) as rev
FROM Purchase
GROUP BY product
ORDER BY rev desc

FWGOS

Purchase(pid, product, price, quantity, month)

Note: some SQL engines
want you to say ORDER BY sum(price*quantity) desc

TM

HAVING CLAUSE

SELECT product, sum(price*quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING sum(quantity) > 30

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid, product, price, quantity, month)

GENERAL FORM OF
GROUPING
AND AGGREGATION

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions
and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

SEMANTICS OF SQL
WITH GROUP-BY

CSE 344 - 2017au

Evaluation steps:
1. Evaluate FROM-WHERE using Nested Loop Semantics
2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

FWGHOS

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE

FROM Purchase

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10

Purchase(pid, product, price, quantity, month)

EXERCISE
Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT month, sum(price*quantity),
sum(quantity) as TotalSold

FROM Purchase
GROUP BY month
HAVING sum(quantity) < 10
ORDER BY sum(quantity)

Purchase(pid, product, price, quantity, month)

WHERE VS HAVING

WHERE condition is applied to individual rows
• The rows may or may not contribute to the aggregate
• No aggregates allowed here
• Occasionally, some groups become empty and are

removed

HAVING condition is applied to the entire group
• Entire group is returned, or removed
• May use aggregate functions on the group

MYSTERY QUERY

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Purchase(pid, product, price, quantity, month)

MYSTERY QUERY

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Lesson:
DISTINCT is
a special case
of GROUP BY

Purchase(pid, product, price, quantity, month)

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

AGGREGATE + JOIN

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

AGGREGATE + JOIN

-- step 2: do the group-by on the join
SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold

Problem: manufacturer is in Purchase, price is in Product...

-- step 1: think about their join
SELECT ...
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

AGGREGATE + JOIN

SELECT x.manufacturer, y.month, count(*)
FROM Product x, Purchase y
WHERE x.pid = y.product_id
and y.price > 100

GROUP BY x.manufacturer, y.month

Product(pid,pname,manufacturer)
Purchase(id,product_id,price,month)

manu
facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

INCLUDING EMPTY
GROUPS
In the result of a group by query, there is one row per group
in the result

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Count(*) is
never 0

FWGHOS

INCLUDING EMPTY
GROUPS

SELECT x.manufacturer, count(y.pid)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Count(pid) is 0
when all pid’s in

the group are
NULL

SUBQUERIES

A subquery is a SQL query nested inside a larger
query
Such inner-outer queries are called nested queries
A subquery may occur in:

• A SELECT clause
• A FROM clause
• A WHERE clause

Rule of thumb: avoid nested queries when possible
• But sometimes it’s impossible to avoid, as we will see

SUBQUERIES…
• Can return a single value to be included in a

SELECT clause
• Can return a relation to be included in the FROM

clause, aliased using a tuple variable
• Can return a single value to be compared with

another value in a WHERE clause
• Can return a relation to be used in the WHERE or

HAVING clause under an existential quantifier

