
CSE 344
MARCH 23RD – SCHEDULING/LOCKING

ADMINISTRIVIA
• HW7 Due Tonight
• OQ6 Due Tonight
• HW8 Due Friday, June 1

• Data without quotation marks
• Extra credit

• OQ7 Due Wednesday, May 30
• Course Evaluations

• Out over the weekend

TRANSACTIONS
We use database transactions everyday

• Bank $$$ transfers
• Online shopping
• Signing up for classes

For this class, a transaction is a series of DB queries
• Read / Write / Update / Delete / Insert
• Unit of work issued by a user that is independent from others

KNOW YOUR
TRANSACTIONS: ACID
Atomic

• State shows either all the effects of txn, or none of them
Consistent

• Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?
Isolated

• Effect of txns is the same as txns running one after another
(i.e., looks like batch mode)

Durable
• Once a txn has committed, its effects remain in the database

SERIAL SCHEDULE

A serial schedule is one in which transactions are executed one after
the other, in some sequential order

Fact: nothing can go wrong if the system executes transactions
serially

• (up to what we have learned so far)
• But DBMS don’t do that because we want better overall system

performance

A SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CONFLICT
SERIALIZABILITY

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

CONFLICT
SERIALIZABILITY

A schedule is conflict serializable if it can be transformed into a serial
schedule by a series of swappings of adjacent non-conflicting
actions

Every conflict-serializable schedule is serializable
The converse is not true (why?)

SCHEDULER

Scheduler = the module that schedules the transaction’s actions,
ensuring serializability

Also called Concurrency Control Manager

We discuss next how a scheduler may be implemented

IMPLEMENTING A
SCHEDULER

Major differences between database vendors
Locking Scheduler

• Aka “pessimistic concurrency control”
• SQLite, SQL Server, DB2

Multiversion Concurrency Control (MVCC)
• Aka “optimistic concurrency control”
• Postgres, Oracle: Snapshot Isolation (SI)

We discuss only locking schedulers in this class

LOCKING SCHEDULER
Simple idea:
Each element has a unique lock
Each transaction must first acquire the lock before
reading/writing that element
If the lock is taken by another transaction, then wait
The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability

WHAT DATA ELEMENTS ARE
LOCKED?

Major differences between vendors:

Lock on the entire database
• SQLite

Lock on individual records
• SQL Server, DB2, etc

CASE STUDY: SQLITE

SQLite is very simple
More info: http://www.sqlite.org/atomiccommit.html

Lock types
• READ LOCK (to read)
• RESERVED LOCK (to write)
• PENDING LOCK (wants to commit)
• EXCLUSIVE LOCK (to commit)

SQLITE
Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
They all read data from the database file
If the transaction commits without writing anything, then it
simply releases the lock

SQLITE

Step 2: when one transaction wants to write
Acquire a RESERVED LOCK
May coexists with many READ LOCKs
Writer TXN may write; these updates are only in main memory;
others don't see the updates
Reader TXN continue to read from the file
New readers accepted
No other TXN is allowed a RESERVED LOCK

SQLITE

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with read locks

Acquire a PENDING LOCK
May coexists with old READ LOCKs
No new READ LOCKS are accepted
Wait for all read locks to be released

Why not write
to disk right now?

SQLITE

Step 4: when all read locks have been released
Acquire the EXCLUSIVE LOCK
Nobody can touch the database now
All updates are written permanently to the database file

Release the lock and COMMIT

SQLITE

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

SCHEDULE
ANOMALIES
What could go wrong if we didn’t have concurrency control:

• Dirty reads (including inconsistent reads)
• Unrepeatable reads
• Lost updates

Many other things can go wrong too

DIRTY READS

T1: WRITE(A)

T1: ABORT

T2: READ(A)

Write-Read Conflict

INCONSISTENT READ

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read Conflict

UNREPEATABLE READ

T1: WRITE(A)
T2: READ(A);

T2: READ(A);

Read-Write Conflict

LOST UPDATE

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

MORE NOTATIONS

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A NON-SERIALIZABLE
SCHEDULE

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

EXAMPLE
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

BUT…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

TWO PHASE LOCKING
(2PL)

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

EXAMPLE: 2PL
TRANSACTIONS
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

TWO PHASE LOCKING
(2PL)

33

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

TWO PHASE LOCKING
(2PL)

37

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

TWO PHASE LOCKING
(2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

TWO PHASE LOCKING
(2PL)

39

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A NEW PROBLEM:
NON-RECOVERABLE SCHEDULE

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

STRICT 2PL

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

STRICT 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback & U1(A);U1(B);

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);

Commit & U2(A); U2(B);

STRICT 2PL
Lock-based systems always use strict 2PL
Easy to implement:

• Before a transaction reads or writes an element A, insert an
L(A)

• When the transaction commits/aborts, then release all locks
Ensures both conflict serializability and recoverability

