
CSE 344
MARCH 21ST – TRANSACTIONS

ADMINISTRIVIA
• HW7 Due Wednesday
• OQ6 Due Wednesday, May 23rd 11:00
• HW8 Out ”Wednesday”

• Will be up today or tomorrow
• Transactions
• Due next Friday

CLASS OVERVIEW
Unit 1: Intro
Unit 2: Relational Data Models and Query
Languages
Unit 3: Non-relational data
Unit 4: RDMBS internals and query optimization
Unit 5: Parallel query processing
Unit 6: DBMS usability, conceptual design
Unit 7: Transactions

• Locking and schedules
• Writing DB applications

TRANSACTIONS
We use database transactions everyday

• Bank $$$ transfers
• Online shopping
• Signing up for classes

For this class, a transaction is a series of DB queries
• Read / Write / Update / Delete / Insert
• Unit of work issued by a user that is independent from others

CHALLENGES
Want to execute many apps concurrently

• All these apps read and write data to the same DB

Simple solution: only serve one app at a time
• What’s the problem?

Want: multiple operations to be executed atomically over the
same DBMS

WHAT CAN GO WRONG?
Manager: balance budgets among projects

• Remove $10k from project A
• Add $7k to project B
• Add $3k to project C

CEO: check company’s total balance
• SELECT SUM(money) FROM budget;

This is called a dirty / inconsistent read
aka a WRITE-READ conflict

WHAT CAN GO WRONG?
App 1:
SELECT inventory FROM products WHERE pid = 1

App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

App 1:
SELECT inventory * price FROM products
WHERE pid = 1

This is known as an unrepeatable read
aka READ-WRITE conflict

WHAT CAN GO WRONG?
Account 1 = $100
Account 2 = $100

Total = $200
• App 1:

– Set Account 1 = $200
– Set Account 2 = $0

• App 2:
– Set Account 2 = $200
– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict

WHAT CAN GO WRONG?
Paying for Tuition (Underwater Basket Weaving)

• Fill up form with your mailing address
• Put in debit card number (because you don’t trust the gov’t)
• Click submit
• Screen shows money deducted from your account
• [Your browser crashes]

Lesson:
Changes to the database
should be ALL or NOTHING

TRANSACTIONS
Collection of statements that are executed atomically (logically
speaking)

10

BEGIN TRANSACTION
[SQL statements]

COMMIT or ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction

KNOW YOUR
TRANSACTIONS: ACID
Atomic

• State shows either all the effects of txn, or none of them
Consistent

• Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?
Isolated

• Effect of txns is the same as txns running one after another
(i.e., looks like batch mode)

Durable
• Once a txn has committed, its effects remain in the database

ATOMIC
Definition: A transaction is ATOMIC if all its updates must
happen or not at all.
Example: move $100 from A to B

• UPDATE accounts SET bal = bal – 100
WHERE acct = A;

• UPDATE accounts SET bal = bal + 100
WHERE acct = B;

• BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE acct
= A;
UPDATE accounts SET bal = bal + 100 WHERE acct
= B;
COMMIT;

ISOLATED
• Definition:

• An execution ensures that transactions are isolated, if the
effect of each transaction is as if it were the only
transaction running on the system.

CONSISTENT
Recall: integrity constraints govern how values in tables are
related to each other

• Can be enforced by the DBMS, or ensured by the app

How consistency is achieved by the app:
• App programmer ensures that txns only takes a consistent DB state

to another consistent state
• DB makes sure that txns are executed atomically

Can defer checking the validity of constraints until the end of a
transaction

DURABLE
A transaction is durable if its effects continue to exist after
the transaction and even after the program has terminated

How?
• By writing to disk!
• More in 444

ROLLBACK
TRANSACTIONS
If the app gets to a state where it cannot complete the
transaction successfully, execute ROLLBACK

The DB returns to the state prior to the transaction

What are examples of such program states?

ACID
Atomic
Consistent
Isolated
Durable

Again: by default each statement is its own txn
• Unless auto-commit is off then each statement starts a

new txn

A schedule is a sequence
of interleaved actions
from all transactions

SCHEDULES

SERIAL SCHEDULE

A serial schedule is one in which transactions are executed one after
the other, in some sequential order

Fact: nothing can go wrong if the system executes transactions
serially

• (up to what we have learned so far)
• But DBMS don’t do that because we want better overall system

performance

EXAMPLE

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in txn source code

EXAMPLE OF A
(SERIAL) SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Ti
m

e

ANOTHER SERIAL
SCHEDULE

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

Ti
m

e

REVIEW: SERIALIZABLE
SCHEDULE

A schedule is serializable if it is
equivalent to a serial schedule

A SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A NON-SERIALIZABLE
SCHEDULE

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

HOW DO WE KNOW IF A
SCHEDULE IS
SERIALIZABLE?

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

CONFLICTS

Write-Read – WR
Read-Write – RW
Write-Write – WW
Read-Read?

CONFLICT
SERIALIZABILITY

Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

CONFLICT
SERIALIZABILITY

A schedule is conflict serializable if it can be transformed into a serial
schedule by a series of swappings of adjacent non-conflicting
actions

Every conflict-serializable schedule is serializable
The converse is not true (why?)

CONFLICT
SERIALIZABILITY

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

CONFLICT
SERIALIZABILITY

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

TESTING FOR CONFLICT-
SERIALIZABILITY

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in
Tj

The schedule is conflict-serializable iff the
precedence graph is acyclic

EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

EXAMPLE 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

EXAMPLE 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

EXAMPLE 2

1 2 3

This schedule is NOT conflict-serializable

A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

SCHEDULER

Scheduler = the module that schedules the transaction’s actions,
ensuring serializability

Also called Concurrency Control Manager

We discuss next how a scheduler may be implemented

