
CSE 344
MAY 18TH – LOSS AND VIEWS

ADMINISTRIVIA
• HW7 Due Wednesday, May 23rd 11:30
• OQ6 Due Wednesday, May 23rd 11:00
• HW8 Out Wednesday, May 23rd

• Due Friday, June 1st

DATABASE DESIGN
PROCESS

companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

FUNCTIONAL
DEPENDENCIES (FDS)

Definition A1, ..., Am à B1, ..., Bn holds in R if:
∀t, t’ ∈ R,
(t.A1 = t’.A1∧...∧ t.Am = t’.Am à t.B1 = t’.B1∧ ... ∧ t.Bn

= t’.Bn)
A1 ... Am B1 ... Bn

if t, t’ agree here then t, t’ agree here

t

t’

R

CLOSURE OF A SET
OF ATTRIBUTES
Given a set of attributes A1, …, An

The closure is the set of attributes B, notated {A1, …, An}+,
s.t. A1, …, An à B

Example:

Closures:
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}

1. name à color
2. category à department
3. color, category à price

KEYS

A superkey is a set of attributes A1, ..., An s.t. for any other attribute B,
we have A1, ..., An à B

A key is a minimal superkey
• A superkey and for which no subset is a superkey

ELIMINATING
ANOMALIES
Main idea:

X à A is OK if X is a (super)key

X à A is not OK otherwise
• Need to decompose the table, but how?

Boyce-Codd Normal Form

BOYCE-CODD NORMAL
FORM

There are no
“bad” FDs:

Definition. A relation R is in BCNF if:

Whenever Xà B is a non-trivial dependency,
then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:
" X, either X+ = X or X+ = [all attributes]

EXAMPLE

The only key is: {SSN, PhoneNumber}
Hence SSN à Name, City is a “bad” dependency

SSN à Name, City

In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

Name,
City

SSN
Phone-
Number

SSN+

DECOMPOSITIONS IN
GENERAL

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

LOSSLESS
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99
Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

LOSSY
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera
19.99 Camera

What is
lossy here?

LOSSY
DECOMPOSITION

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera
19.99 Camera

DECOMPOSITION IN
GENERAL

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

Fact: If A1, ..., An à B1, ..., Bm then the decomposition is lossless

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

It follows that every BCNF decomposition is lossless

The decomposition is called lossless if R = S1 ⋈ S2

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

Let:

IS THIS LOSSLESS?

If we decompose R into ΠS1(R), ΠS2(R), ΠS3(R), …
Is it true that S1 ⋈ S2 ⋈ S3 ⋈… = R ?

That is true if we can show that:

R ⊆ S1 ⋈ S2 ⋈ S3 ⋈… always holds (why?)

R ⊇ S1 ⋈ S2 ⋈ S3 ⋈… neet to check

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC

THE CHASE TEST FOR
LOSSLESS JOIN

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

Hence R
contains (a,b,c,d)

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC CDàA

SCHEMA REFINEMENTS
= NORMAL FORMS

• 1st Normal Form = all tables are flat
• 2nd Normal Form = no FD with ”non-prime”

attributes
• Obselete
• Prime attributes: attributes part of a key

• Boyce Codd Normal Form = no “bad” FDs
• Are there problems with BCNF?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose?

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose? R1(theatre,city) R2(theatre,title)
• What’s wrong? (think of FDs)

DEPENDENCY PRESERVATION
• Bookings(title,theatre,city)

• FD:
• theatre -> city
• title,city -> theatre

• What are the keys?

• None of the single attributes
• {title,city},{theatre,title}

• BCNF?
• No, {theatre} is neither a trivial dependency nor a superkey
• Decompose? R1(theatre,city) R2(theatre,title)
• What’s wrong? (think of FDs)
• We can’t guarantee title,city -> theatre with simple

constraints if we join

NORMAL FORMS
• 3rd Normal form

• Allows tables with BCNF violations if a
decomposition separates an FD

• Can result in redundancy
• 4th Normal form

• Multi-valued dependencies
• Incorporate info about attributes in

neither A nor B
• All MVDs are also FDs

• Apply BCNF alg with for MVD and FD

NORMAL FORMS
• 5th Normal Form

• Join dependency
• Lossless/exact joining
• Join independent Tables

• 6th Normal Form
• Only allow trivial join dependencies
• Only need key/tuple constraints to

represent all constraints

FORMS/DECOMPOSITION
• Produce and verify FDs, superkeys, keys
• Be able to decompose a table into BCNF
• Flaws of 1NF/BCNF
• Identify loss and be able to apply the

chase test

IMPLEMENTATION
We learned about how to normalize tables to avoid anomalies

How can we implement normalization in SQL if we can’t
modify existing tables?

• This might be due to legacy applications that rely on previous
schemas to run

VIEWS
A view in SQL =

• A table computed from other tables, s.t., whenever the base
tables are updated, the view is updated too

More generally:
• A view is derived data that keeps track of changes in the

original data
Compare:

• A function computes a value from other values, but does not
keep track of changes to the inputs

A SIMPLE VIEW

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

WE USE A VIEW LIKE ANY TABLE
A "high end" store is a store that sell some
products over 1000.
For each customer, return all the high end stores
that they visit.

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store

AND v.price > 1000

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

TYPES OF VIEWS
Virtual views

• Computed only on-demand – slow at runtime
• Always up to date

Materialized views
• Pre-computed offline – fast at runtime
• May have stale data (must recompute or update)
• Indexes are materialized views

A key component of physical tuning of databases is
the selection of materialized views and indexes

MATERIALIZED VIEWS
CREATE MATERIALIZED VIEW View_name

BUILD [IMMEDIATE/DEFERRED]

REFRESH [FAST/COMPLETE/FORCE]

ON [COMMIT/DEMAND]

AS Sql_query

• Immediate v deferred
• Build immediately, or after a query

• Fast v. Complete v. Force
• Level of refresh – log based v. complete rebuild

• Commit v. Demand
• Commit: after data is added
• Demand: after conditions are set (time is common)

VERTICAL
PARTITIONING

SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
432432 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
. . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN

VERTICAL PARTITIONING

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

VERTICAL PARTITIONING
CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’

VERTICAL PARTITIONING
CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Original query:

VERTICAL PARTITIONING
CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Modified query:

SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’

Final query:

VERTICAL PARTITIONING
APPLICATIONS

Advantages
• Speeds up queries that touch only a small fraction of columns
• Single column can be compressed effectively, reducing disk I/O

Disadvantages
• Updates are expensive!
• Need many joins to access many columns
• Repeated key columns add overhead

HORIZONTAL
PARTITIONING

SSN Name City
234234 Mary Houston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Calgary
-- Jean Montreal

Customers

SSN Name City
234234 Mary Houston

CustomersInHouston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

.

HORIZONTAL PARTITIONING

CREATE VIEW Customers AS
CustomersInHouston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

HORIZONTAL PARTITIONING

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

HORIZONTAL PARTITIONING
Better: remove CustomerInHouston.city etc

CREATE VIEW Customers AS
(SELECT SSN, name, ‘Houston’ as city
FROM CustomersInHouston)

UNION ALL
(SELECT SSN, name, ‘Seattle’ as city
FROM CustomersInSeattle)

UNION ALL
. . .

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

HORIZONTAL PARTITIONING

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

HORIZONTAL PARTITIONING
APPLICATIONS
Performance optimization

• Especially for data warehousing
• E.g., one partition per month
• E.g., archived applications and active applications

Distributed and parallel databases

Data integration

CONCLUSION

Poor schemas can lead to performance inefficiencies

E/R diagrams are means to structurally visualize and design
relational schemas

Normalization is a principled way of converting schemas into a
form that avoid such problems

BCNF is one of the most widely used normalized form in
practice

