CSE 344

MAY 16™ - NORMALIZATION

ADMINISTRIVIA

HW6 Due Tonight

* Prioritize local runs
0OQ6 Out Today

HW?7 Out Today

 E/R + Normalization
Exams

* |In my office; Regrades through me

DATABASE DESIGN
PROCESS

Conceptual Model: product company

P
Relational Model:
Tables + constraints
And also functional dep. AN
. < W Y

Normalization:
Eliminates anomalies

Conceptual Schema

Physical storage details
Physical Schema

RELATIONAL SCHEMA

DESIGN
Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

RELATIONAL SCHEMA

Name SSN PhoneNumber | City
Fred 123-45-6789 206-555-1234 | Seattle
Fred 123-45-6789 206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield
Anomalies:
* Redundancy = repeat data
« Update anomalies = what if Fred moves to “Bellevue™?

* Deletion anomalies = what if Joe deletes his phone number?

RELATION

Break the relation into two:

Name SSN PhoneNumber | City

Fred 123-45-6789 206-555-1234 | Seattle

Fred 123-45-6789 206-555-6543 | Seattle

/ Joe 987-65-4321 908-555-2121 | Westfield
Name SSN City SSN PhoneNumber
Fred 123-45-6789 | Seattle 123-45-6789 206-555-1234
Joe 987-65-4321 | Westfield 123-45-6789 206-555-6543
987-65-4321 908-555-2121

Anomalies have gone:
* No more repeated data
» Easy to move Fred to “Bellevue” (how ?)
 Easy to delete all Joe’s phone numbers (how ?)

RELATIONAL SCHEMA
DESIGN
(OR LOGICAL DESIGN)

How do we do this systematically?
Start with some relational schema

Find out its functional dependencies (FDs)

Use FDs to normalize the relational schema

FUNCTIONAL
DEPENDENCIES (FDS)

Definition

If two tuples agree on the attributes

AL A, .. A

then they must also agree on the attributes

B, B, ..., B '

Formally: @‘ determines B,..B,,

AL A, ..., A,>B, B, .. B,

FUNCTIONAL
DEPENDENCIES (FDS)

Definition A, ...,A,~> B,, ..., B, holds in R if:
vVt t' € R,

(tA=t.A A AtA =t.A_ >tB =t.B,A .. AtB,
= t.Br}— — —

if t, t’ agree here then t, t' agree here

EXAMPLE

An FD holds, or does not hold on an instance:

EmplID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 0876 Salesrep
E1111 Smith 0876 Salesrep
E9999 Mary 1234 Lawyer

EmpID - Name, Phone,

Position &> Phone

Position

but not Phone = Position

EXAMPLE

EmplD Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 < |Salesrep
E1111 Smith 0876 & |Salesrep
E9999 Mary 1234 Lawyer

Position = Phone

EXAMPLE

EmplD Name Phone Position
E0045 Smith 1234 > |Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 > |Lawyer

But not Phone - Position

EXAMPLE

name -> color
category - department
color, category - price

name | category | color | department | price
Gizmo | Gadget | Green Toys 49
Tweaker| Gadget | Green Toys 99

Do all the FDs hold on this instance?

EXAMPLE

name -> color
category - department
color, category - price

name | category | color | department | price

Gizmo | Gadget | Green Toys 49
Tweaker | Gadget | Green Toys 49

Gizmo | Stationary | Green | Office-supp. | 59

What about this one ?

BUZZWORDS

FD holds or does not hold on an instance

If we can be sure that every instance of R will be one in which
a given FD is true, then we say that R satisfies the FD

If we say that R satisfies an FD, we are stating a constraint on
R

WHY BOTHER WITH

FDS?

Name SSN PhoneNumber | City
Fred 123-45-6789 206-555-1234 | Seattle
Fred 123-45-6789 206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield

Anomalies:

* Redundancy = repeat data

« Update anomalies = what if Fred moves to “Bellevue™?

* Deletion anomalies = what if Joe deletes his phone number?

AN INTERESTING
OBSERVATION

name —> color
If all these FDs are true: category - department
color, category - price

Then this FD also holds: name, category - price '

If we find out from application domain that a relation satisfies some FDs,
it doesn’'t mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

CLOSURE OF A SET
OF ATTRIBUTES

Given a set of attributes A, ..., A,

The closure is the set of attributes B, notated {A,, ..., A},
st.A,...,A, 2B

Example: 1. name - color
2. category - department
3. color, category - price
Closures:

name* = {name, color}
{name, category}* = {name, category, color, department, price}
color* = {color}

CLOSURE ALGORITHM

X={A1, ..., An).

Repeat until X doesn’t change do:
if B, ...B,>C isaFDand
B,, ..., B, areallin X
then add C to X.

{name, category}* =

Example:

1. name - color
2. category - department
3. color, category - price

{ name, category, color, department, price}

Hence: name, category > color, department, price '

EXAMPLE

In class:

R(A,B,C,D,EF)

Compute {A,B}* X ={A, B,

Compute {A, F}* X ={A, F,

EXAMPLE

In class:

R(A,B,C,D,EF)

Compute {A,B}* X={A,B,C,D,E}

Compute {A, F}* X ={A, F, }

EXAMPLE

In class:

R(A,B,C,D,EF)

Compute {A,B}* X={A,B,C,D,E}

Compute {A, F}* X={A,F,B,C,D, E}

EXAMPLE

In class:

R(A,B,C,D,EF)

Compute {A,B}* X={A,B,C,D,E}

Compute {A, F}* X={A,F,B,C,D, E}

What is the key of R?

PRACTICE AT HOME

Find all FD’s implied by:

A,B > C
A,D > B

B - D

PRACTICE AT HOME

Find all FD’s implied by:

A,B > C
A,D > B

B - D

Step 1: Compute X*, for every X:

A*=A, B*=BD, C*=C, D*=D
AB* =ABCD, AC*=AC, AD*=ABCD,
BC*=BCD, BD*=BD, CD*=CD
ABC* = ABD* = ACD*=ABCD (no need to compute— why ?)
BCD*=BCD, ABCD*=ABCD

Step 2: Enumerate all FD's X 2> Y, s.t. Y € X*and XNY =92

AB - CD, AD->BC, ABC > D,ABD > C,ACD > B

KEYS

A superkey is a set of attributes A,, ..., A, s.t. for any other attribute B,
we have A,, ..., A, 2> B

A key is a minimal superkey

A superkey and for which no subset is a superkey

COMPUTING
(SUPER)KEYS

For all sets X, compute X*
If X* = [all attributes], then X is a superkey

Try reducing to the minimal X’s to get the key

EXAMPLE

Product(name, price, category, color)

name, category - price
category - color

What is the key ?

EXAMPLE

Product(name, price, category, color)

name, category - price
category - color

What is the key ?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

KEY OR KEYS ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more
distinct keys

KEY OR KEYS ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more

distinct keys

A->B
B->C
C-2>A

or

AB->C
BCoOAl

what are the keys here ?

A—->BC
B>AC

ELIMINATING
ANOMALIES

Main idea:
X 2> Ais OK if X is a (super)key

X 2> Ais not OK otherwise

* Need to decompose the table, but how?

Boyce-Codd Normal Form

BOYCE-CODD NORMAL
FORM

There are no Definition. A relation R is in BCNF if:
“bad” FDs:

Whenever X-> B is a non-trivial dependency,
then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:
VvV X, either X*=X or X*=[all attributes]

BCNF DECOMPOSITION
ALGORITHM

Normalize(R)
find X s.t.: X # X* and X* # [all attributes]
if (not found) then “R is in BCNF”
letY =X*-X;, Z=][all attributes] - X*
decompose R into R1(X U Y)and R2(X U Z)
Normalize(R1); Normalize(R2);

EXAMPLE

Fred 123-45-6789 |206-555-1234 | Seattle
Fred 123-45-6789 |206-555-6543 | Seattle
Joe 987-65-4321 |908-555-2121 | Westfield
Joe 987-65-4321 |908-555-1234 | Westfield

SSN - Name, City

The only key is: {SSN, PhoneNumber}
Hence SSN - Name, City is a “bad” dependency

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

SSN*

Phone
Numbe

EXAMPLE BCNF

SSN - Name, City

DECOMPOSITION
Name SSN City
Fred 123-45-6789 | Seattle
Joe 987-65-4321 | Westfield
SSN PhoneNumber

123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Phone-
Number

SSN*

Let’'s check anomalies:
* Redundancy ?
» Update ?
* Delete ?

Find X s.t.: X #X* and X* # [all attributes]

EXAMPLE BCNF DECOMPOSITION

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age —> hairColor

Find X s.t.: X #X* and X* # [all attributes]

EXAMPLE BCNF DECOMPOSITION

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age —> hairColor

lteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

phoneNumber

Find X s.t.: X #X* and X* # [all attributes]

EXAMPLE BCNF DECOMPOSITION

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age —> hairColor

What are
the keys ?

lteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

lteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: X #X* and X* # [all attributes]

EXAMPLE BCNF DECOMPOSITION

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age

age > hairColor @e the keys!

lteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

lteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

R(A,B,C,D)
EXAMPLE: BCNF

R(A,B,C,D)

R(A,B,C,D)
EXAMPLE: BCNF

Recall: find X s.t.
X ¢ X* ¢ [all-attrs] R(A,B,C,D)

R(A,B,C,D)
EXAMPLE: BCNF

R(A,B,C,D)
A* = ABC # ABCD

R(A,B,C,D)
EXAMPLE: BCNF

R(A,B,C,D)
A* = ABC # ABCD

R(A,B,C,D)
EXAMPLE: BCNF

R(A,B,C,D)
A* = ABC # ABCD

R4(A,B,C)
B*=BC # ABC

R(A,B,C,D)
EXAMPLE: BCNF B->C

R(A,B,C,D)
A* = ABC # ABCD

R4(A,B,C)
B*=BC # ABC

What are
the keys ?

What happens if in R we first pick B* ? Or AB* ?

DECOMPOSITIONS IN
GENERAL

R(A, ..,A, B, ..,B_,Cy .., C)

S,(A, ..., A, B, ... B)IS,A,, ..., A, Cy ..., C.)

S, = projection of RonA,, ..., A, B4, ..., B,

S, = projection of Ron A4, ..., A, Cy, ..., C,

