CSE 344

MAY 11TH - ENTITIES

ADMINISTRIVIA

- HW6 Due next Wednesday (May 16)
 - Section 7 slides very helpful
- HW7 Out Wednesday
 - Due May 23rd
- HW8 Out May 23rd
 - Due last day of class, Jun 1
- Exam
 - Graded and on canvas tonight
 - Back in class or in OH on Monday

DATABASE DESIGN

What it is:

Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

DATABASE DESIGN

Consider issues such as:

- What entities to model
- How entities are related
- What constraints exist in the domain

Several formalisms exists

- We discuss E/R diagrams
- UML, model-driven architecture

Reading: Sec. 4.1-4.6

DATABASE DESIGN PROCESS

Conceptual Model:

Relational Model:

Tables + constraints

And also functional dep.

Normalization:

Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema

ENTITY / RELATIONSHIP DIAGRAMS

Entity set = a class

• An entity = an object

Product

Attribute

city

Relationship

makes

KEYS IN E/R DIAGRAMS

Every entity set must have a key

WHAT IS A RELATION

?

A mathematical definition:

• if A, B are sets, then a relation R is a subset of A × B

$$A=\{1,2,3\}, B=\{a,b,c,d\},$$

$$A \times B = \{(1,a),(1,b), \ldots, (3,d)\}\$$

 $R = \{(1,a), (1,c), (3,b)\}$

A=

makes is a subset of Product × Company:

MULTIPLICITY OF E/R RELATIONS

one-one:

many-one

many-many

ATTRIBUTES ON RELATIONSHIPS

MULTI-WAY RELATIONSHIPS

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How?)

As a set of triples ⊆ Person × Product × Store

ARROWS IN MULTIWAY RELATIONSHIPS

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

ARROWS IN MULTIWAY RELATIONSHIPS

A: Any person buys a given product from at most one store AND every store sells to every person at most one product

CONVERTING MULTI-WAY RELATIONSHIPS TO BINARY

CONVERTING MULTI-WAY RELATIONSHIPS TO BINARY

3. DESIGN PRINCIPLES

What's wrong?

Moral: Be faithful to the specifications of the application!

DESIGN PRINCIPLES: WHAT'S WRONG?

DESIGN PRINCIPLES: WHAT'S WRONG?

FROM E/R DIAGRAMS TO RELATIONAL SCHEMA

Entity set → relation

Relationship → **relation**

ENTITY SET TO RELATION

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

N-N RELATIONSHIPS TO RELATIONS

Represent this in relations

N-N RELATIONSHIPS TO RELATIONS

Shipment(prod-ID,cust-ID, name, date) =

Shipping-Co(name, address)

prod-ID	cust-ID	<u>name</u>	date
Gizmo55	Joe12	UPS	4/10/2011
Gizmo55	Joe12	FEDEX	4/9/2011

N-1 RELATIONSHIPS TO RELATIONS

Represent this in relations

N-1 RELATIONSHIPS TO RELATIONS

Orders(prod-ID,cust-ID, date1, name, date2) Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

MULTI-WAY RELATIONSHIPS TO RELATIONS

Purchase(prod-ID, ssn, name)