
CSE 344
MAY 2ND – MAP/REDUCE

ADMINISTRIVIA
• HW5 Due Tonight
• Practice midterm
• Section tomorrow

• Exam review

PERFORMANCE METRICS
FOR PARALLEL DBMSS

Nodes = processors, computers

Speedup:
• More nodes, same data è higher speed

Scaleup:
• More nodes, more data è same speed

LINEAR V.S. NON-
LINEAR SPEEDUP

nodes (=P)

Speedup

×1 ×5 ×10 ×15

LINEAR V.S. NON-
LINEAR SCALEUP

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

WHY SUB-LINEAR
SPEEDUP AND SCALEUP?
Startup cost

• Cost of starting an operation on many nodes

Interference
• Contention for resources between nodes

Skew
• Slowest node becomes the bottleneck

SHARED NOTHING
Cluster of commodity machines on
high-speed network
Called "clusters" or "blade servers”
Each machine has its own memory
and disk: lowest contention.

Example: Google

Because all machines today have
many cores and many disks, shared-
nothing systems typically run many
"nodes” on a single physical
machine.

Easy to maintain and scale
Most difficult to administer and tune.

We discuss only Shared Nothing in class

Interconnection Network

P P P

D D D

M M M

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

APPROACHES TO
PARALLEL QUERY
EVALUATION
Inter-query parallelism

• Transaction per node
• Good for transactional workloads

Inter-operator parallelism
• Operator per node
• Good for analytical workloads

Intra-operator parallelism
• Operator on multiple nodes
• Good for both?

CSE 344 - 2017au 8We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

DISTRIBUTED QUERY
PROCESSING
Data is horizontally partitioned on many servers

Operators may require data reshuffling

First let’s discuss how to distribute data across multiple
nodes / servers

HORIZONTAL DATA
PARTITIONING

1 2 P . . .

Data: Servers:

K A B
… …

HORIZONTAL DATA
PARTITIONING

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

HORIZONTAL DATA
PARTITIONING
Block Partition:

• Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

Hash partitioned on attribute A:
• Tuple t goes to chunk i, where i = h(t.A) mod P + 1
• Recall: calling hash fn’s is free in this class

Range partitioned on attribute A:
• Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
• Tuple t goes to chunk i, if vi-1 < t.A < vi

UNIFORM DATA V.S.
SKEWED DATA
Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition

Hash-partition
• On the key K
• On the attribute A

Range partition

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

Keep this in mind in the next few slides

PARALLEL EXECUTION
OF RA OPERATORS:
GROUPING
Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute group by if:

R is hash-partitioned on A ?

R is block-partitioned ?

R is hash-partitioned on K ?

PARALLEL EXECUTION
OF RA OPERATORS:
GROUPING

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
R is block-partitioned or hash-partitioned on K

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Run grouping
on reshuffled

partitions

SPEEDUP AND
SCALEUP
Consider:

• Query: γA,sum(C)(R)
• Runtime: only consider I/O costs

If we double the number of nodes P, what is the new running
time?

• Half (each server holds ½ as many chunks)
If we double both P and the size of R, what is the new
running time?

• Same (each server holds the same # of chunks)

But only if the data is without skew!

SKEWED DATA
• R(K,A,B,C)
• Informally: we say that the data is skewed if one server

holds much more data that the average
• E.g. we hash-partition on A, and some value of A occurs

many times
• Then the server holding that value will be skewed

PARALLEL EXECUTION
OF RA OPERATORS:
PARTITIONED HASH-JOIN
Data: R(K1, A, B), S(K2, B, C)
Query: R(K1, A, B) ⋈ S(K2, B, C)

• Initially, both R and S are partitioned on K1 and K2

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

PARALLEL JOIN ILLUSTRATION

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

⋈ ⋈

Partition

Local
Join

BROADCAST JOIN

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

EXAMPLE PARALLEL QUERY
PLAN

SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

PARALLEL QUERY
PLAN

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

PARALLEL QUERY
PLAN

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

EXAMPLE PARALLEL
QUERY PLAN

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all lines where
hash(item) = 1

contains all orders and all lines where
hash(item) = 2

contains all orders and all lines where
hash(item) = 3

Order(oid, item, date), Line(item, …)

MOTIVATION
We learned how to parallelize relational database
systems

While useful, it might incur too much overhead if our
query plans consist of simple operations

MapReduce is a programming model for such
computation

First, let’s study how data is stored in such systems

DISTRIBUTED FILE
SYSTEM (DFS)
For very large files: TBs, PBs
Each file is partitioned into chunks, typically 64MB
Each chunk is replicated several times (≥3), on different
racks, for fault tolerance
Implementations:

• Google’s DFS: GFS, proprietary
• Hadoop’s DFS: HDFS, open source

MAPREDUCE
Google: paper published 2004
Free variant: Hadoop

MapReduce = high-level programming model and
implementation for large-scale parallel data processing

TYPICAL PROBLEMS
SOLVED BY MR

Read a lot of data
Map: extract something you care about from each record
Shuffle and Sort
Reduce: aggregate, summarize, filter, transform
Write the results

Paradigm stays the same,
change map and reduce functions for
different problems

DATA MODEL
Files!

A file = a bag of (key, value) pairs

A MapReduce program:
Input: a bag of (inputkey, value) pairs
Output: a bag of (outputkey, value) pairs

STEP 1: THE MAP
PHASE

User provides the MAP-function:
Input: (input key, value)
Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key,
value) pairs in the input file

STEP 2: THE REDUCE
PHASE

User provides the REDUCE function:
Input: (intermediate key, bag of values)
Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes
the bag of values to the REDUCE function

EXAMPLE
Counting the number of occurrences of each word in a large
collection of documents
Each Document

• The key = document id (did)
• The value = set of words (word)

32

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

