CSE 344

APRIL 30™ - SCHEDULING / PARALLEL

DISK SCHEDULING

* Query optimization
* Good DB design
* Good estimation

- Hardware independent
« All Disk I/Os are not created equal

 Sectors close to each other are more
preferable to read

DISK SCHEDULING

 Disk 1/0O behavior

* Very rare to have requests come in one at
a time

* Requests come in batches, i.e. read the
whole file

« How does the hardware process a batch?

DISK SCHEDULING

 Suppose sectors are ordered from the
outside to the inside of the disk

* Given a collection of sectors, how do we
read them with the smallest amount of
head movement?

DISK SCHEDULING

 What are some strategies for processing
the following batch?

« 95, 180, 34, 119, 11, 123, 62, 64

 Assume sectors are numbered from O-
199 and that we start at sector 50

DISK SCHEDULING

 What are some strategies for processing
the following batch?

« 95, 180, 34, 119, 11, 123, 62, 64

 Assume sectors are numbered from O-
199 and that we start at sector 50

* |deas?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

 FIFO. Naive solution
* Pros/cons?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* FIFO. Naive solution
* Pros/cons?
- + easy to add new sectors to the queue
» + almost no computation to maintain

* - non-optimal, easy to create adversarial
batches — doesn't really take advantage
of batches

640 tracks

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

011 34 50 6264 05 119123 180 199
-+ttt t—+

&
——

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* Get closest (Shortest seek time first)
* Pros/cons?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* Get closest (Shortest seek time first)

* Pros/cons?
« + efficient (236)
» - costly to maintain
« - starvation

DISK SCHEDULING
- 95,180, 34, 119, 11, 123, 62, 64

011 34 50 6264 95 119123 18(.] 1.99
| | I | | L L

/,)-

—

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

« Sorting:
* 50,11,34,62,64,95,119,123,180
* Pros/cons?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

« Sorting:
+ 50,11,34,62,64,95,119,123,180
* Pros/cons?
« + fewer track movements (208)
- costly to maintain, add new
« - doesn’t account for start position

 + no starvation

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* How do we modify the "sorting” algorithm
to better take advantage of the start
position?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* How do we modify the "sorting” algorithm
to better take advantage of the start

position?
 How does an elevator schedule rides?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* How do we modify the "sorting” algorithm
to better take advantage of the start

position?
 How does an elevator schedule rides?

« Start in a position, go in one direction until
you reach the end, repeat going the other
way

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

 Elevator algorithm (SCAN)
* Pros/cons?

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

 Elevator algorithm (SCAN)

 Pros/cons?
011 34 50 6264 05 119123 18(3 1199

el

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

 Elevator algorithm (SCAN)
* Pros/cons?
* + no starvation

 -some maintenance
« + efficient (230)

DISK SCHEDULING

 Weird fact about disks

* Moving the arm accurately takes longer than
moving it large numbers of tracks

* Why might this matter?

DISK SCHEDULING

 Weird fact about disks

* Moving the arm accurately takes longer than
moving it large numbers of tracks

* Why might this matter?
« SCAN in only one direction then quickly

move the arm back to the beginning
(quicker than standard find)

- C-SCAN

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

 Elevator algorithm (C-SCAN)
* Pros/cons?
* + no starvation
* - some maintenance
« + efficient (187 + large movement)
« ~ goes from 0-199

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64
 Elevator algorithm (C-SCAN)

011 34 50 6264 95 119123 18(l) 1.99
| N | I |) | I

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* What if we don't insist on going all the
way to the ends?
* - need “accurate” arm movement
* + can save some articulation
* - might delay reads from inner/outer sectors

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64

* What if we don't insist on going all the
way to the ends? (C-LOOK)
* - need “accurate” arm movement
* + can save some articulation (157 + large)
* - might delay reads from inner/outer sectors

DISK SCHEDULING

« 95, 180, 34, 119, 11, 123, 62, 64
* C-LOOK (circular look)

011 34 50 6264 95 119123 180 199
+— ; —t i — H

QUERY EVALUATION STEPS
SQL query
!
:Parse & Rewrite Query]

—

[Select Logical Plan

Query
optimization=

{Select Physical Plan]

- Physical
plan

[Query Execution]

Disk
Scheduling

Disk

QUERY EVALUATION

* Design

* Query
- DBMS
- Hardware
« Single machine optimization

« Hardware scaleup

WHY COMPUTE IN
PARALLEL?

Multi-cores:

» Most processors have multiple cores
* This trend will likely increase in the future

Big data: too large to fit in main memory

* Distributed query processing on 100x-1000x servers
- Widely available now using cloud services
» Recall HW3 and HWG6

PERFORMANCE METRICS
FOR PARALLEL DBMSS

Nodes = processors, computers

Speedup:

* More nodes, same data = higher speed

Scaleup:

* More nodes, more data = same speed

LINEAR V.S. NON-
LINEAR SPEEDUP

Speedup

x1’ x5 x10 x15

nodes (=P)

LINEAR V.S. NON-

LINEAR SCALEUP
Batch
Scaleup
|deal
%1 x5 x10 x15
nodes (=P) AND data size

WHY SUB-LINEAR
SPEEDUP AND SCALEUP?

Startup cost

 Cost of starting an operation on many nodes

Interference

» Contention for resources between nodes

Skew

« Slowest node becomes the bottleneck

ARCHITECTURES FOR
PARALLEL DATABASES

Shared memory
Shared disk

Shared nothing

EMORY

Nodes share both RAM and disk
Dozens to hundreds of processors

1 | | Example: SQL Server runs on a single

Interconnection Network machine and can leverage many threads

- to speed up a query

check your HW3 query plans

Global Shared
Memory

Easy to use and program

Expensive to scale
* last remaining cash cows in the
hardware industry

All nodes access the same disks

Found in the largest "single-box"
(non-cluster) multiprocessors

M M M Example: Oracle
[Wisieoineciion Network] No need to worry about shared
memory

Hard to scale: existing deployments
typically have fewer than 10 machines

SHARED NOTHING

Cluster of commodity machines on

high-speed network
Interconnection Network
Called "clusters” or "blade servers”

Each machine has its own memory
and disk: lowest contention.

GGG Example: Google

Because all machines today have
many cores and many disks, shared-
nothing systems typically run many

"nodes” on a single physical
@ @ machine.

We discuss only Shared Nothing in class
Most difficult to administer and tune.

APPROACHES TO
PARALLEL QUERY
EVALUATION

id=cid

Inter-query parallelism

 Transaction per node
* Good for transactional workloads

Inter-operator parallelism

* Operator per node
« Good for analytical workloads

Intra-operator parallelism

* Operator on multiple nodes
« Good for both?

We study only intra-operator parallelism: most scalable

DISTRIBUTED QUERY
PROCESSING

Data is horizontally partitioned on many servers
Operators may require data reshuffling

First let’s discuss how to distribute data across multiple
nodes / servers

SINGLE NODE QUERY
PROCESSING (REVIEW)

Given relations R(A,B) and S(B, C), no indexes:

Selection: 0,5-123(R)
* Scan file R, select records with A=123

Group-by: Yasum)(R)
» Scan file R, insert into a hash table using A as key
* When a new key is equal to an existing one, add B to the value

Join: R > S

« Scan file S, insert into a hash table using B as key
« Scan file R, probe the hash table using B

HORIZONTAL DATA
PARTITIONING

Data: Servers:

1 2 P

HORIZONTAL DATA
PARTITIONING

Data: Servers:

K A B K A B K A B

P
>
o

T i A

AN

> Which tuples

go to what server?

HORIZONTAL DATA
PARTITIONING

Block Partition:

» Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

Hash partitioned on attribute A:

* Tuple t goes to chunk i, where i = h(t.A) mod P + 1
 Recall: calling hash fn’s is free in this class

Range partitioned on attribute A:

* Partition the range of Ainto -© =vy<v,;<...<vp=
* Tuple t goes to chunk i, if v <t A<v,

UNIFORM DATA V.S.
SKEWED DATA

Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition
Assuming good
Hash-partition hash function

* On the key K
* On the attribute A

E.g. when all records
have the same value
. of the attribute A, then
Range partition May be skewed all records end up in the

same partition

Keep this in mind in the next few slides

