
CSE 344
APRIL 30TH – SCHEDULING / PARALLEL

DISK SCHEDULING
• Query optimization

• Good DB design
• Good estimation
• Hardware independent

• All Disk I/Os are not created equal
• Sectors close to each other are more

preferable to read

DISK SCHEDULING
• Disk I/O behavior

• Very rare to have requests come in one at
a time

• Requests come in batches, i.e. read the
whole file

• How does the hardware process a batch?

DISK SCHEDULING
• Suppose sectors are ordered from the

outside to the inside of the disk
• Given a collection of sectors, how do we

read them with the smallest amount of
head movement?

DISK SCHEDULING
• What are some strategies for processing

the following batch?
• 95, 180, 34, 119, 11, 123, 62, 64
• Assume sectors are numbered from 0-

199 and that we start at sector 50

DISK SCHEDULING
• What are some strategies for processing

the following batch?
• 95, 180, 34, 119, 11, 123, 62, 64
• Assume sectors are numbered from 0-

199 and that we start at sector 50
• Ideas?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• FIFO. Naive solution
• Pros/cons?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• FIFO. Naive solution
• Pros/cons?

• + easy to add new sectors to the queue
• + almost no computation to maintain
• - non-optimal, easy to create adversarial

batches – doesn‘t really take advantage
of batches

• 640 tracks

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Get closest (Shortest seek time first)
• Pros/cons?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Get closest (Shortest seek time first)
• Pros/cons?

• + efficient (236)
• - costly to maintain
• - starvation

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Sorting:
• 50,11,34,62,64,95,119,123,180
• Pros/cons?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Sorting:
• 50,11,34,62,64,95,119,123,180
• Pros/cons?

• + fewer track movements (208)
• - costly to maintain, add new
• - doesn’t account for start position
• + no starvation

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• How do we modify the ”sorting” algorithm
to better take advantage of the start
position?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• How do we modify the ”sorting” algorithm
to better take advantage of the start
position?

• How does an elevator schedule rides?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• How do we modify the ”sorting” algorithm
to better take advantage of the start
position?

• How does an elevator schedule rides?
• Start in a position, go in one direction until

you reach the end, repeat going the other
way

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Elevator algorithm (SCAN)
• Pros/cons?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Elevator algorithm (SCAN)
• Pros/cons?

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Elevator algorithm (SCAN)
• Pros/cons?

• + no starvation
• - some maintenance
• + efficient (230)

DISK SCHEDULING
• Weird fact about disks

• Moving the arm accurately takes longer than
moving it large numbers of tracks

• Why might this matter?

DISK SCHEDULING
• Weird fact about disks

• Moving the arm accurately takes longer than
moving it large numbers of tracks

• Why might this matter?
• SCAN in only one direction then quickly

move the arm back to the beginning
(quicker than standard find)

• C-SCAN

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Elevator algorithm (C-SCAN)
• Pros/cons?

• + no starvation
• - some maintenance
• + efficient (187 + large movement)
• ~ goes from 0-199

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• Elevator algorithm (C-SCAN)

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• What if we don’t insist on going all the
way to the ends?

• - need “accurate” arm movement
• + can save some articulation
• - might delay reads from inner/outer sectors

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• What if we don’t insist on going all the
way to the ends? (C-LOOK)

• - need “accurate” arm movement
• + can save some articulation (157 + large)
• - might delay reads from inner/outer sectors

DISK SCHEDULING
• 95, 180, 34, 119, 11, 123, 62, 64

• C-LOOK (circular look)

QUERY EVALUATION STEPS

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Disk
Scheduling

Physical
plan

QUERY EVALUATION
• Design

• Query
• DBMS
• Hardware

• Single machine optimization
• Hardware scaleup

WHY COMPUTE IN
PARALLEL?
Multi-cores:

• Most processors have multiple cores
• This trend will likely increase in the future

Big data: too large to fit in main memory
• Distributed query processing on 100x-1000x servers
• Widely available now using cloud services
• Recall HW3 and HW6

PERFORMANCE METRICS
FOR PARALLEL DBMSS

Nodes = processors, computers

Speedup:
• More nodes, same data è higher speed

Scaleup:
• More nodes, more data è same speed

LINEAR V.S. NON-
LINEAR SPEEDUP

nodes (=P)

Speedup

×1 ×5 ×10 ×15

LINEAR V.S. NON-
LINEAR SCALEUP

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

WHY SUB-LINEAR
SPEEDUP AND SCALEUP?
Startup cost

• Cost of starting an operation on many nodes

Interference
• Contention for resources between nodes

Skew
• Slowest node becomes the bottleneck

ARCHITECTURES FOR
PARALLEL DATABASES
Shared memory

Shared disk

Shared nothing

SHARED MEMORY
Nodes share both RAM and disk
Dozens to hundreds of processors

Example: SQL Server runs on a single
machine and can leverage many threads
to speed up a query
check your HW3 query plans

Easy to use and program
Expensive to scale

• last remaining cash cows in the
hardware industry

Interconnection Network

P P P

Global Shared
Memory

D D D

SHARED DISK
All nodes access the same disks
Found in the largest "single-box"
(non-cluster) multiprocessors

Example: Oracle

No need to worry about shared
memory

Hard to scale: existing deployments
typically have fewer than 10 machines

Interconnection Network

P P P

D D D

M M M

SHARED NOTHING
Cluster of commodity machines on
high-speed network
Called "clusters" or "blade servers”
Each machine has its own memory
and disk: lowest contention.

Example: Google

Because all machines today have
many cores and many disks, shared-
nothing systems typically run many
"nodes” on a single physical
machine.

Easy to maintain and scale
Most difficult to administer and tune.

We discuss only Shared Nothing in class

Interconnection Network

P P P

D D D

M M M

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

APPROACHES TO
PARALLEL QUERY
EVALUATION
Inter-query parallelism

• Transaction per node
• Good for transactional workloads

Inter-operator parallelism
• Operator per node
• Good for analytical workloads

Intra-operator parallelism
• Operator on multiple nodes
• Good for both?

We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

DISTRIBUTED QUERY
PROCESSING
Data is horizontally partitioned on many servers

Operators may require data reshuffling

First let’s discuss how to distribute data across multiple
nodes / servers

SINGLE NODE QUERY
PROCESSING (REVIEW)
Given relations R(A,B) and S(B, C), no indexes:

Selection: σA=123(R)
• Scan file R, select records with A=123

Group-by: γA,sum(B)(R)
• Scan file R, insert into a hash table using A as key
• When a new key is equal to an existing one, add B to the value

Join: R ⋈ S
• Scan file S, insert into a hash table using B as key
• Scan file R, probe the hash table using B

HORIZONTAL DATA
PARTITIONING

1 2 P . . .

Data: Servers:

K A B
… …

HORIZONTAL DATA
PARTITIONING

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

HORIZONTAL DATA
PARTITIONING
Block Partition:

• Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

Hash partitioned on attribute A:
• Tuple t goes to chunk i, where i = h(t.A) mod P + 1
• Recall: calling hash fn’s is free in this class

Range partitioned on attribute A:
• Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
• Tuple t goes to chunk i, if vi-1 < t.A < vi

UNIFORM DATA V.S.
SKEWED DATA
Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition

Hash-partition
• On the key K
• On the attribute A

Range partition

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

Keep this in mind in the next few slides

