CSE 344

APRIL 27™ - COST ESTIMATION

ADMINISTRIVIA

« HW5S Out

* Please verity that you can run queries
* Midterm
« May 9% 9:30-10:20 — MLR 301
* Review (in class) — May 7th
« Practice exam — May 4t
* Through parallelism: next week’s material

INDEX BASED

SELECTION
B(R) = 2000
Example: T(R) = 100,000 cost of 5_(R) = 7?
V(R, a) = 20

Table scan: B(R) = 2,000 I/Os
Index based selection:

- If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
* If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

Lesson: Don'’t build unclustered indexes when V(R,a) is small !

OUTLINE

Join operator algorithms

* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)

Note about readings:

* In class, we discuss only algorithms for joins
« Other operators are easier: read the book

JOIN ALGORITHMS

Hash join
Nested loop join

Sort-merge join

HASH JOIN

Hash join: R>~S

Scan R, build buckets in main memory
Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

CSE 344 - 2017au

HASH JOIN

Hash join: R>~S

Scan R, build buckets in main memory
Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

One-pass algorithm when B(R) =M

* M = number of memory pages available

HASH JOIN EXAMPLE

Patient(pid, name, address)
Insurance(pid, provider, policy nb)
Patient >« Insurance

Two tuples
per page

Patient Insurance
2 ‘Blue’ 123

4 ‘Prem’ 343
3 ‘GrpH’ 554

HASH JOIN EXAMPLE S
ge-
Patient o< Insurance enough #

Memory M = 21 pages

| Disk

Insurance
21 4 6 | 6

4 | 31111 3

2|8

This is one page
with two tuples

[TT1T
/

HASH JOIN EXAMPLE

Step 1: Scan Patient and build hash table in memory
Can be done in Memory M = 21 pages
method open() Hash h: pid % 5

| =

< Disk <

//
Patient Insurance

W2 2466 Input buffer
Bl [«]s][1]s

Bl 27s

BE [s]o

\ //

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next() Hash h: pid % 5

| =

— Disk
\ //

Patient Insurance 2 | 4

P2 (2466 Input buffer
B [4]s][1]s

Bl (2]
_ | NEE

\ //

utput buffer

Write to disk or
pass to next
operator

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next() Hash h: pid % 5

| =

— Disk
\ //

38]le]9]
Patient Insurance 2 4 . 4

- | 2 | . | 616 Input buffer Output buffer

_ | BEEIEE
Bl (2]
_ | NEE

\ //

HASH JOIN EXAMPLE

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

calls to next() Hash h: pid % 5
— Disk
\

. | . |
-

Patient Insurance BE e
- 2|14|/6|6 Input buffer Output buffer
- | 4 | 3 | 11 3 Keep going until read all of Insurance

Bl (2]
- s | 9 Cost: B(R) + B(S)

\ //

NESTED LOOP JOINS

Tuple-based nested loop R~ S

R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t4,t,)

What is the Cost?

NESTED LOOP JOINS

Tuple-based nested loop R~ S

R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t4,t,)

Cost: B(R) + T(R) B(S)

Multiple-pass since S is read many times

What is the Cost?

PAGE-AT-A-TIME
REFINEMENT

for each page of tuples rin R do
for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

Cost: B(R) + B(R)B(S) What is the Cost?

PAGE-AT-A-TIME
REFINEMENT

— Disk
\ //

Patient Insurance
B2 [2]4][e]s
Bl [«]3][1]s

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

_E

Output buffer

B (2]s
B [s]o

\ //

PAGE-AT-A-TIME
REFINEMENT

— Disk
\ //

Patient Insurance

B][]
T EnalnE

- Input buffer for Patient

4 | 3 | Input buffer for Insurance

Output buffer

B (2]s
B [s]o

\ //

PAGE-AT-A-TIME

REFINEMENT
— Disk
\ //
Patient Insurance
B (2«65
Bl [«]3][1]s
B [2]s]

U EEBE
\ //

- Input buffer for Patient

2 | 8 | Input buffer for Insurance

Keep going until read

2
all of Insurance E
Then repeat for next Output butfer
page of Patient... until end of Patient

Cost: B(R) + B(R)B(S)

BLOCK-NESTED-LOOP
REFINEMENT

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t,,t,)

Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

SORT-MERGE JOIN

Sort-merge join: R~ S

Scan R and sort in main memory
Scan S and sort in main memory
Merge Rand S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

SORT-MERGE JOIN
EXAMPLE

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

— Disk
\ //
Patient Insurance

214 |6 |6

4 | 3 1 3

2|8

(11T

SORT-MERGE JOIN
EXAMPLE

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

11212133446
— Disk
T —— | Te T8 18 s

Patient Insurance
2 | 4 6 | 6

4 | 3 1 3

2|8

(11T

SORT-MERGE JOIN
EXAMPLE

Step 3: Merge Patient and Insurance
Memory M = 21 pages

112 1123|341 4|6
— Disk
\

—— e Ts 83
Patient Insurance . 1
- 2 | 4 6| 6 Output buffer
B [«]s][1]3
e (2]
- EEBE
\ //

SORT-MERGE JOIN
EXAMPLE

Step 3: Merge Patient and Insurance
Memory M = 21 pages

112 1123|341 4|6
— Disk
\

—— ||Te[s][s]s
Patient Insurance E
- 2 | 4 6| 6 Output buffer
- 4 13|13 Keep going until end of first relation
___NBE
. NOE
\ //

INDEX NESTED LOOP
JOIN

R>~S
Assume S has an index on the join attribute

Iterate over R, for each tuple fetch corresponding tuple(s) from S

Cost:

* |[f index on S is clustered:

B(R) + T(R) * (B(S) * 1/V(S,a))
* Ifindex on S is unclustered:

B(R) + T(R) * (T(S) * 1/V(S,a))

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 1

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = WA’

0pno=2 Ascity="Seattle’ A sstate="WA’

Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 1

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = WA’

0pno=2 Ascity="Seattle’ A sstate="WA’

T =10000
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 1

SELECT sname
T <1 FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

0pno=2 Ascity="Seattle’ A sstate="WA’

T =10000
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = WA’

TN

o) pno=2 SCIty‘ Seattle’ A sstate="WA'
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = WA’

T

o) pno=2 SCIty‘ Seattle’ A sstate="WA'
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = WA’

- / \ Very wrong!
Why?

o) pno=2 SCIty‘ Seattle’ A sstate="WA'
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

SELECT sname

FROM Supplier x, Supply y
T=4 WHERE X.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’
and x.sstate = WA’

- / \ Very wrong!
Why?

o) pno=2 SCIty‘ Seattle’ A sstate="WA'
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

LOGICAL QUERY PLAN 2

Different
estimate ®

SELECT sname

FROM Supplier x, Supply y
T=4 WHERE X.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’
and x.sstate = WA’

- / \ Very wrong!
Why?

o) pno=2 SCIty‘ Seattle’ A sstate="WA'
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 1

T <1

0pno=2 Ascity="Seattle’ A sstate="WA’

T=10000

Total cost:

Block nested loop joi

Scan Supply Scan Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20
V(Supply, pno) = 2500 V(Supplier, state) = 10

11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 1

T <1

0pno=2 Ascity="Seattle’ A sstate="WA’

T'=10000 Total cost: 100+100*100/10 = 1100
> Cost: B(R) + B(R)B(S)/(M-1)
Block nested loop joi
Scan Supply Scan Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 2

Cost of Supply(pno) =
T=4 Cost of Supplier(scity) =
Total cost:

ain memory join O sstate="WA'

" T=50

(0 N
Unclustered — Pno=2
0scity=‘SeattIe’

index lookup Unclustered
Supply(pno) | index lookup
Supply Supplier Supplier(scity)
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier. scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 2

Cost of Supply(pno) = 4
T=4 Cost of Supplier(scity) =
Total cost:

ain memory join O sstate="WA'

" T=50

(0 N
Unclustered — Pno=2
0scity=‘SeattIe’

index lookup Unclustered
Supply(pno) | index lookup
Supply Supplier Supplier(scity)
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier. scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 2

Cost of Supply(pno) = 4
T=4 Cost of Supplier(scity) = 50
Total cost: 54

ain memory join O sstate="WA'

" T=50

(0 N
Unclustered — Pno=2
0scity=‘SeattIe’

index lookup Unclustered
Supply(pno) | index lookup
Supply Supplier Supplier(scity)
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 _
B(Supply) = 100 V(Supplier. scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 3

T=4 l

0scity=‘SeattIe’ Asstate="WA’

=sj
T=4
Clustered

Index join

(0 N
Unclustered — Pno=2
index lookup

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) =
Cost of Index join =
Total cost:

Supplier

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 3

T=4 l

0scity=‘SeattIe’ Asstate="WA’

=sj
T=4
Clustered

Index join

(0 N
Unclustered — Pno=2
index lookup

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Cost of Supply(pno) = 4
Cost of Index join =
Total cost:

Supplier

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

M=11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL, PLAN 3

T=4 l

Oscity="Seattle’ A sstate="WA' Cost of Supply(pno) = 4

Cost of Index join = 4
= gi
T=4
Clustered

Total cost: 8

o Index join
Unclustered — Pno=2
index lookup
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 M=11
B(Supply) = 100 V(Supplier, scity) = 20 -

V(Supply, pno) = 2500 V(Supplier, state) = 10

QUERY OPTIMIZER
SUMMARY

Input: A logical query plan
Output: A good physical query plan
Basic query optimization algorithm

« Enumerate alternative plans (logical and physical)
« Compute estimated cost of each plan
* Choose plan with lowest cost

This is called cost-based optimization

DISK SCHEDULING

* Query optimization
* Good DB design
* Good estimation

- Hardware independent
« All Disk I/Os are not created equal

 Sectors close to each other are more
preferable to read

