CSE 344

APRIL 23RD — INDEXING

ADMINISTRIVIA

HW4 Due Wednesday
OQ5 Due Wednesday
HWS Out Wednesday

« SQL++
 Home VM
« AWS

- Emaill if having trouble

QUERY EVALUATION STEPS

Query
optimization=

SQL query
!
 Parse & Rewrite Query]

—

[Select Logical Plan

{Select Physical Plan]

N—

Physical
plan

[Query Execution]

LOGICAL VS
PHYSICAL PLANS

Logical plans:

 Created by the parser from the input SQL text
* Expressed as a relational algebra tree
- Each SQL query has many possible logical plans

Physical plans:

* Goal is to choose an efficient implementation for each
operator in the RA tree

» Each logical plan has many possible physical plans

PIPELINED
EXECUTION

Tuples generated by an operator are
immediately sent to the parent

Benefits:

* No operator synchronization issues

* No need to buffer tuples between operators

» Saves cost of writing intermediate data to disk

» Saves cost of reading intermediate data from disk

This approach is used whenever possible

QUERY EXECUTION
BOTTOM LINE

SQL query transformed into physical plan

* Access path selection for each relation
« Scan the relation or use an index (next lecture)
- Implementation choice for each operator
* Nested loop join, hash join, etc.
- Scheduling decisions for operators
* Pipelined execution or intermediate materialization
Pipelined execution of physical plan

RECALL: PHYSICAL
DATA INDEPENDENCE

Applications are insulated from changes in
physical storage details

SQL and relational algebra facilitate physical
data independence

* Both languages input and output relations
» Can choose different implementations for operators

QUERY
PERFORMANCE

My database application is too slow... why?

One of the queries is very slow... why?

To understand performance, we need to understand:

* How is data organized on disk
* How to estimate query costs

* In this course we will focus on disk-based DBMSs

Student

ID fName IName

DATA STO RAGE 10 | Tom Hanks

20 | Amy Hanks

DBMSs store data in files

Most common organization is row-wise storage

On disk, a file is split into 0 | Tom Hanks

block 1
blocks 20 Amy Hanks

Each block contains 50
a set of tuples 200

block 2

220
240

block 3

420
800

In the example, we have 4 blocks with 2 tuples each

DATA FILE TYPES

The data file can be one of:
Heap file

« Unsorted
Sequential file

« Sorted according to some attribute(s) called key

Student

ID

fName

IName

10

Tom

Hanks

20

Amy

Hanks

Student

ID | fName IName
DATA FILE TYPES 10 [Tom | Hanks
20 | Amy Hanks
The data file can be one of:
Heap file
« Unsorted

Sequential file

« Sorted according to some attribute(s) called key

Note: key here means something different from primary key:

it just means that we order the file according to that attribute.

In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on

our database.

INDEX

An additional file, that allows fast access to records in the data file
given a search key

INDEX

An additional file, that allows fast access to records in the data file
given a search key

The index contains (key, value) pairs:

* The key = an attribute value (e.g., student ID or name)
* The value = a pointer to the record

INDEX

An additional file, that allows fast access to records in the data file
given a search key

The index contains (key, value) pairs:

* The key = an attribute value (e.g., student ID or name)
* The value = a pointer to the record
Could have many indexes for one table

Key = means here search key

KEYS IN INDEXING

Different keys:
Primary key — uniquely identifies a tuple
Key of the sequential file — how the data file is sorted, if at all

Index key — how the index is organized

Student

EXAMPLE 1: ID | fName IName
INDEX ON ID 10 | Tom Hanks

20 | Amy Hanks

Index Student_ID on Student.ID Data File Student] ..

/_/\
K_H
10 | ——10 | Tom Hanks
20 1120 | Amy Hanks
%0 I —— | 50

200 —
| 200

220

240 220
420 240
800

420

950

800

Student

EXAMPLE 2: ID | fName IName
INDEX ON FNAME 10 [Tom | Hanks
20 | Amy Hanks
Index Student_fName
on Student.fName Data File Student] ...
—— —
Amy 10 Tom Hanks
po \ﬁi 20 |Amy Hanks
Bob >[50 | ..
Cho
= 200 | ...
220
240
420
800
Tom /

INDEX ORGANIZATION

We need a way to represent indexes after loading into memory
so that they can be used

Several ways to do this:
Hash table

B+ trees — most popular

* They are search trees, but they are not binary instead have
higher fanout
 Will discuss them briefly next

Specialized indexes: bit maps, R-trees, inverted index

Student

ID fName IName

10 | Tom Hanks

HASH TABLE EXAMPLE

Index Student_ID on Student.ID Data File Student] ..
. —

= I —10 | Tom Hanks

20 1 |20 |Amy Hanks

20 | Amy Hanks

50 —

————>| 50

200 D e
220

240 220

420 240
800

| 200

420
800

Index File Data file

(preferably (on disk)
in memory)

B+ TREE INDEX BY
EXAMPLE

d=2
Find the key 40
80
20 | 60 100 | 120 | 140

\ T~

20\\40<=60 \\\A
151 18 20 1 30| 40 | 50 60 | 65 80 | 85 | 90
NI 1R 1A - i g

NN (e 1

Y oN N R N
10| 15| 18| |20| |30|/40| |50/ 60| 65| 80| 85|90

CLUSTERED VS
UNCLUSTERED

Index entries

Index entries

J/\ \\ AN\ (Index File) SR~ /X

/A L N (Data file) SN N T I

Data Records Data Records
CLUSTERED UNCLUSTERED

Every table can have only one clustered and many unclustered indexes
Why?

INDEX
CLASSIFICATION

Clustered/unclustered

* Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

 Unclustered = records close in index may be far in data

INDEX
CLASSIFICATION

Clustered/unclustered (terminology used in this class)

» Clustered = records close in index are close in data

« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

 Unclustered = records close in index may be far in data
Primary/secondary

* Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

* Meaning 2: means the same as clustered/unclustered

INDEX
CLASSIFICATION

Clustered/unclustered (terminology used in this class)

* Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

 Unclustered = records close in index may be far in data
Primary/secondary

* Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

* Meaning 2: means the same as clustered/unclustered
Organization B+ tree or Hash table

SCANNING A DATA
FILE

Disks are mechanical devices!

 Technology from the 60s; density much higher now
Read only at the rotation speed!

Consequence:
Sequential scan is MUCH FASTER than random reads

* Good: read blocks 1,2,3,4.,5,...
« Bad: read blocks 2342, 11, 321,9, ...

Rule of thumb:

* Random reading 1-2% of the file = sequential scanning the entire
file; this is decreasing over time (because of increased density of
disks)

Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything

SUMMARY SO FAR

Index = a file that enables direct access to records in another
data file

B+ tree / Hash table

» Clustered/unclustered
Data resides on disk

 Organized in blocks

« Sequential reads are efficint

« Random access less efficient

« Random read 1-2% of data worse than sequential

Student(ID, fname, Iname) SELECT *

Takes(studentID, courselD) FROM Student x, Takes 'y
WHERE x.ID=y.studentID AND y.courselD > 300

EXAMPLE

for y in Takes

if courselD>300then | Assume the database has indexes on these attributes:
for xin Student « Takes_courselD = index on Takes.courselD

itx.ID=y.studentlD |, gtydent_ID = index on Student.ID
output

Student(ID, fname, Iname) SELECT *

Takes(studentID, courselD) FROM Student x, Takes 'y
WHERE x.ID=y.studentID AND y.courselD > 300

EXAMPLE

for y in Takes
if courselD > 300 then |} Assume the database has indexes on these attributes:

for x in Student « Takes_courselD = index on Takes.courselD
itx.D=y.studentlD |, gyydent_ID = index on Student.ID
output * -

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’
for x” in Student_ID where x’.ID = y.studentID
x = fetch the Student record pointed to by x’
output *

Index join

Student(ID, fname, Iname) SELECT *

Takes(studentID, courselD) FROM Student x, Takes 'y
WHERE x.ID=y.studentID AND y.courselD > 300

EXAMPLE

for y in Takes

if courselD>300then | Assume the database has indexes on these attributes:
for xin Student « Takes_courselD = index on Takes.courselD

itx.ID=y.studentlD |, gtydent_ID = index on Student.ID
output

Index selection

Index join
~tudontiDelD for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’
for x” in Student_ID where x’.ID = y.studentID
O sourselD>300 x = fetch the Student record pointed to by x’
Index selection output i

Takes Student

CREATING INDEXES IN SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I
CREATE INDEX V1 ON V(N) I

CREATE INDEX V2 ON V(P, M) I

CREATE INDEX V3 ON V(M, N) l

CREATE UNIQUE INDEX V4 ON V(N) l

CREATE CLUSTERED INDEX V5 ON V(N) I

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I

CREATE INDEX V1 ON V(N) I

CREATE INDEX V2 ON V(P, M) i What does this mean?
CREATE INDEX V3 ON V(M, N) l

CREATE UNIQUE INDEX V4 ON V(N) l

CREATE CLUSTERED INDEX V5 ON V(N) l

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, N varchar(20), P int); I
CREATE INDEX V1 ON V(N) select *
fromV
where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I
CREATE INDEX V3 ON V(M, N) select *
fromV

where P=55

CREATE UNIQUE INDEX V4 ON V(N) l
select *

fromV

CREATE CLUSTERED INDEX V5 ON V(N) l where M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I yes
CREATE INDEX V1 ON V(N) select *

from V

where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I
CREATE INDEX V3 ON V(M, N) select *

from V yes

where P=55

CREATE UNIQUE INDEX V4 ON V(N) l
select *

from V no

CREATE CLUSTERED INDEX V5 ON V(N) l where M=77

GETTING PRACTICAL:
CREATING INDEXES IN
SQL

CREATE TABLE V(M int, Nvarchar(20), P int); I yes
CREATE INDEX V1 ON V(N) I select ”

from V

where P=55 and M=77
CREATE INDEX V2 ON V(P, M) I

CREATE INDEX V3 ON V(M, N) I select *

from V yes

where P=55
CREATE UNIQUE INDEX V4 ON V(N) l

select *

from V no
CREATE CLUSTERED INDEX V5 ON V(N) | where M=77

Not supported
in SQLite

Student

ID fName IName

WHICH INDEXES? 10 [Tom | Hanks

20 | Amy Hanks

The index selection problem

 Given a table, and a “workload” (big Java application with lots

of SQL queries), decide which indexes to create (and which
ones NOT to create!)

Who does index selection:

 The database administrator DBA

« Semi-automatically, using a database administration tool

INDEX SELECTION: WHICH SEARCH
KEY

Make some attribute K a search key if the WHERE clause
contains:

* An exact match on K

* Arange predicate on K

* Ajoinon K

THE INDEX SELECTION
PROBLEM 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V

WHERE N=7? WHERE P=?

THE INDEX SELECTION

PROBLEM 1

V(M, N, P); l

Your workload is this

100000 queries:

SELECT *
FROM V
WHERE N=7?

What indexes ?

100 queries:

SELECT *
FROM V
WHERE P=?

THE INDEX SELECTION
PROBLEM 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

A: V(N) and V(P) (hash tables or B-trees)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P); l

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM V
WHERE N>? and N<? WHERE P=?

What indexes ?

100000 queries:

INSERT INTO V
VALUES (2, 2, ?)

THE INDEX SELECTION
PROBLEM 2

V(M, N, P); I

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N>? and N<? WHERE P=?

A: definitely V(N) (must B-tree); unsure about V(P)

THE INDEX SELECTION
PROBLEM 3

V(M, N, P); l

Your workload is this

100000 queries: 1000000 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N=? WHERE N=? and P>?

What indexes ?

THE INDEX SELECTION
PROBLEM 3

V(M, N, P); I

Your workload is this

100000 queries: 1000000 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)
WHERE N=? WHERE N=? and P>?

A: V(N, P)

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. Anindex V(P, N)?

THE INDEX SELECTION

PROBLEM 4

V(M, N, P); l

Your workload is this

1000 queries:

SELECT *
FROM V
WHERE N>7 and N<?

What indexes ?

CSE 344 - 2017au

100000 queries:

SELECT *
FROM V
WHERE P>? and P<?

THE INDEX SELECTION
PROBLEM 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

A: V(N) unclustered, V(P) clustered index

