CSE 344

APRIL 20™ - RDBMS INTERNALS




ADMINISTRIVIA

« OQ5 Out

- Datalog — Due next Wednesday
« HW4 Due next Wednesday

« Written portion (.pdf)

» Coding portion (one .dl file)




TODAY

« Back to RDBMS

* "Query plans” and DBMS planning

- Management between SQL and
execution

* Optimization techniques
* Indexing and data arrangement




QUERY EVALUATION STEPS

Query
optimization=

SQL query
!
 Parse & Rewrite Query]

—

[Select Logical Plan

{Select Physical Plan]

N—

Physical
plan

[Query Execution]




LOGICAL VS
PHYSICAL PLANS

Logical plans:

 Created by the parser from the input SQL text
* Expressed as a relational algebra tree
- Each SQL query has many possible logical plans

Physical plans:

* Goal is to choose an efficient implementation for each
operator in the RA tree

» Each logical plan has many possible physical plans




REVIEW: RELATIONAL
ALGEBRA Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y Msname
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’ Oscity= ‘Seattle’ and sstate= ‘WA and pno=2

Sld = sid

Relational algebra expression is / \
also called the “logical query plan”

Supplier Supply




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL QUERY PLAN 1
(On the fly) T

shame

A physical query plan is a logical
query plan annotated with
physical implementation details

SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
sid = sid and x.scity = ‘Seattle’

///////// \\\\\\\\\ and x.sstate = ‘WA’

Supplier Supply
(File scan) (File scan)

(On the fly)

Oscity= ‘Seattle’ and sstate= ‘WA and pno=2

(Nested loop)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PHYSICAL QUERY PLAN 2
(On the fly) T

shame

Same logical query plan
Different physical plan

(On the fly)

Oscity=‘Seattle’ and sstate= ‘WA and pno=2 SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
sid = sid and x.scity = ‘Seattle’

///////// \\\\\\\\\ and x.sstate = ‘WA’

Supplier Supply
(File scan) (File scan)

(Hash join)




Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

PHYSICAL QUERY PLAN 3

(On the ﬂy) Msname

(Sort-merge join) ]

sid = sid

(Scan & write /D/T/ \

(a) c530|ty- Seattle’ and sstate= ‘WA’

Supplier
(File scan)

Different but equivalent logical
(d) query plan; different physical plan

SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

(C) and y.pno = 2

and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(b) Opno=2 (Scan & write to T2)

Supply
(File scan)




QUERY OPTIMIZATION
PROBLEM

For each SQL query... many logical plans

For each logical plan... many physical plans

Next: we will discuss physical operators;
how exactly are query executed?




PHYSICAL OPERATORS

Each of the logical operators may have one
or more implementations = physical

operators

Will discuss several basic physical
operators, with a focus on join




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

MAIN MEMORY ALGORITHMS

Logical operator:

Supplier Piy=iq SUpply

Propose three physical operators for the join, assuming the
tables are in main memory:

1.
2.
3.




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

MAIN MEMORY ALGORITHMS

Logical operator:

Supplier Piy=iq SUpply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(?7?)
2. Merge join O(?7?)
3. Hash join O(?7?)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

MAIN MEMORY ALGORITHMS

Logical operator:

Supplier Piy=iq SUpply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n?)
2. Merge join O(n log n)
3. Hash join O(n) ... O(n?)




BRIEF REVIEW OF
HASH TABLES

Separate chaining:

A (naive) hash function:
Duplicates OK

0
1 WHY 27
h(x) = x mod ’IOI 2
3 503 103 503
4
Operations: 0
6 76 666
find(103) = ?7? 7
8 48
9

insert(488) = 27




BRIEF REVIEW OF
HASH TABLES

insert(k, v) = inserts a key k with value v

Many values for one key

* Hence, duplicate k’s are OK

find(k) = returns the list of all values v associated to the key k




ITERATOR
INTERFACE

Each operator implements three methods:
open()
next()

close()




ITERATOR INTERFACE

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();




ITERATOR INTERFACE

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();




ITERATOR INTERFACE

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

Tuple next () {

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any) }
void close ();




ITERATOR INTERFACE

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple

void open (Predicate p,
Operator child) {

this.p = p; this.child = child;
}
Tuple next () {

boolean found = false;

Tuple r = null;

while (!found) {

// produces output tuple(s) r = child.next();
// returns null when done if (r == null) break;
Tuple next (); found = p(r);

}

return r;

// cleans up (if any)
void close ();

}

}
void close () { child.close(); }




ITERATOR INTERFACE

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Query plan execution

Operator q = parse(“SELECT ...”);
g = optimize(q);

q.open();

while (true) {
Tuple t = g.next();
if (t == null) break;
else printOnScreen(t);

}
g.close();




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

(On the fly) Moo for nested loop join

(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

(Nested loop)

SNoO = sho

N

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

open() .
(On the fly) Moo for nested loop join

(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

(Nested loop)

SNoO = sho

N

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

open() L

(On the fly) Moo for nested loop join
open()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

(Nested loop)

SNoO = sho

N

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

open() -
(On the fly) e for nested loop join
open()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
open()
(Nested loop)
SNO = SNOo
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

open() .
(On the fly) e for nested loop join
open()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
open()
(Nested loop)
SNO = SNOo
open() / \
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

open() -

(On the fly) e for nested loop join
open()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
open()

(Nested loop)

SNoO = sho

open() / \pen()

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() for nested loop join

(On the fly) Msname

(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

(Nested loop)

SNoO = sho

N

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() .
(On the fly) Moo for nested loop join
next()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

(Nested loop)

SNoO = sho

N

Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() .

(On the fly) e for nested loop join

next()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2

next()
(Nested loop)

SNO = sho
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() .
(On the fly) e for nested loop join
next()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
next()
(Nested loop)
SNO = sho
next() / \
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() .
(On the fly) e for nested loop join
next()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
next()
(Nested loop)
SNO = sho
next() / \ next()
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

Discuss: open/next/close

next() .
(On the fly) e for nested loop join
next()
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
next()
(Nested loop)
SNO = sho
next()
next() / \ next()
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

(On the fly) TMename
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
(Hash Join)
SNO = SNOo
Tuples from
here are
Pipelined Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

PIPELINING

(On the fly) TMename
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
Tuples from
(Hash Join) herejare,
= blocked
Tuples from
here are
Pipelined Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BLOCKED EXECUTION

(On the fly) Msname
(On the fly) Oscity=“Seattle’ and sstate= ‘WA and pno=2
(Merge Join)
SNG = SNO
_ \
Suppliers Supplies

(File scan) (File scan)




Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BLOCKED EXECUTION

(On the fly) TMename
(On the ﬂy) O-scity=‘SeattIe’ and sstate= ‘WA’ and pno=2
(Merge Join)
sNo = sno
Blocked % % Blocked
Suppliers Supplies

(File scan) (File scan)




PIPELINED
EXECUTION

Tuples generated by an operator are
immediately sent to the parent

Benefits:

* No operator synchronization issues

* No need to buffer tuples between operators

» Saves cost of writing intermediate data to disk

» Saves cost of reading intermediate data from disk

This approach is used whenever possible




QUERY EXECUTION
BOTTOM LINE

SQL query transformed into physical plan

* Access path selection for each relation
« Scan the relation or use an index (next lecture)
- Implementation choice for each operator
* Nested loop join, hash join, etc.
- Scheduling decisions for operators
* Pipelined execution or intermediate materialization
Pipelined execution of physical plan




RECALL: PHYSICAL
DATA INDEPENDENCE

Applications are insulated from changes in
physical storage details

SQL and relational algebra facilitate physical
data independence

* Both languages input and output relations
» Can choose different implementations for operators




QUERY
PERFORMANCE

My database application is too slow... why?

One of the queries is very slow... why?

To understand performance, we need to understand:

* How is data organized on disk
* How to estimate query costs

* In this course we will focus on disk-based DBMSs




