
CSE 344
APRIL 20TH – RDBMS INTERNALS

ADMINISTRIVIA
• OQ5 Out

• Datalog – Due next Wednesday
• HW4 Due next Wednesday

• Written portion (.pdf)
• Coding portion (one .dl file)

TODAY
• Back to RDBMS

• ”Query plans” and DBMS planning
• Management between SQL and

execution
• Optimization techniques
• Indexing and data arrangement

QUERY EVALUATION STEPS

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

LOGICAL VS
PHYSICAL PLANS

Logical plans:
• Created by the parser from the input SQL text
• Expressed as a relational algebra tree
• Each SQL query has many possible logical plans

Physical plans:
• Goal is to choose an efficient implementation for each

operator in the RA tree
• Each logical plan has many possible physical plans

REVIEW: RELATIONAL
ALGEBRA

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

PHYSICAL QUERY PLAN 1

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

PHYSICAL QUERY PLAN 2

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

PHYSICAL QUERY PLAN 3

Supplier Supply

sid = sid

(a) σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

(Scan & write to T2)

QUERY OPTIMIZATION
PROBLEM

For each SQL query… many logical plans

For each logical plan… many physical plans

Next: we will discuss physical operators;
how exactly are query executed?

PHYSICAL OPERATORS
Each of the logical operators may have one
or more implementations = physical
operators

Will discuss several basic physical
operators, with a focus on join

MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1.
2.
3.

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1. Nested Loop Join O(??)
2. Merge join O(??)
3. Hash join O(??)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

MAIN MEMORY ALGORITHMS
Logical operator:
Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1. Nested Loop Join O(n2)
2. Merge join O(n log n)
3. Hash join O(n) … O(n2)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BRIEF REVIEW OF
HASH TABLES

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF REVIEW OF
HASH TABLES
insert(k, v) = inserts a key k with value v

Many values for one key
• Hence, duplicate k’s are OK

find(k) = returns the list of all values v associated to the key k

ITERATOR
INTERFACE
Each operator implements three methods:

open()

next()

close()

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Iterator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}
return in;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
while (!found) {

Tuple in = child.next();
if (in == EOF) return EOF;
found = p(in);

}

return in;
}
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

}

}

Example “on the fly” selection operator

ITERATOR INTERFACE

ITERATOR INTERFACE

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

class Select implements Operator {...
void open (Predicate p,

Operator child) {
this.p = p; this.child = child;

}
Tuple next () {
boolean found = false;
Tuple r = null;
while (!found) {

r = child.next();
if (r == null) break;
found = p(r);

}
return r;

}
void close () { child.close(); }

}

Example “on the fly” selection operator

ITERATOR INTERFACE

Operator q = parse(“SELECT ...”);
q = optimize(q);

q.open();
while (true) {
Tuple t = q.next();
if (t == null) break;
else printOnScreen(t);

}
q.close();

Query plan execution
interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

}

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Discuss: open/next/close
for nested loop join

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Tuples from
here are
pipelined

PIPELINING

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

BLOCKED EXECUTION

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Blocked Blocked

PIPELINED
EXECUTION

Tuples generated by an operator are
immediately sent to the parent
Benefits:

• No operator synchronization issues
• No need to buffer tuples between operators
• Saves cost of writing intermediate data to disk
• Saves cost of reading intermediate data from disk

This approach is used whenever possible

QUERY EXECUTION
BOTTOM LINE

SQL query transformed into physical plan
• Access path selection for each relation

• Scan the relation or use an index (next lecture)
• Implementation choice for each operator

• Nested loop join, hash join, etc.
• Scheduling decisions for operators

• Pipelined execution or intermediate materialization
Pipelined execution of physical plan

RECALL: PHYSICAL
DATA INDEPENDENCE

Applications are insulated from changes in
physical storage details

SQL and relational algebra facilitate physical
data independence

• Both languages input and output relations
• Can choose different implementations for operators

QUERY
PERFORMANCE

My database application is too slow… why?
One of the queries is very slow… why?

To understand performance, we need to understand:
• How is data organized on disk
• How to estimate query costs

• In this course we will focus on disk-based DBMSs

