CSE 344

MARCH 26TH - INTRODUCTION

WELCOME!

- CSE 344
- Today's lecture
 - Course administration
 - What to expect
 - Introduction and motivation

COURSE FORMAT

Lectures

Location: MLR 301

Sections:

- Content: exercises, tutorials, questions, new materials (occasionally)
- Locations: see web
- Please attend
- Bring your laptop

8 homework assignments7 web quizzes

Midterm and final

GRADING

Homeworks	30%
Web quizzes	10%
Midterm	25%
Final	35%

This is all subject to change

ADMINISTRATION

Web page: http://www.cs.washington.edu/344

- Syllabus (course information)
- Lecture/section notes will be available there
- Homework assignments will be available there
- Link to web quizzes is there

Piazza

- Questions and clarification; place to give and get help
- NOT office hours, code can be difficult to debug remotely

Gitlab

• Account created this week, for submitting HW assignments

NewGradiance

• Autograded online quizzes, good for practice, unlimited attempts

Database Systems: The Complete Book,

Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom

Good reference and alternative explanation

Also, good source for practice problems

EIGHT HOMEWORK ASSIGNMENTS

- H1: Sqlite intro (Out today)
- H2: Sqlite basics
- H3: Advanced SQL on Azure
- H4: Datalog and Relational Algebra
- H5: NoSQL: Json/SQL++
- H6: Spark on AWS
- H7: Schema Design
- **H8: Transactional Application**

Submit via git

ABOUT THE ASSIGNMENTS

You will learn/practice the course material:

• SQL, RA, parallel db, transactions, ...

You will also learn lots of new technology

- Cloud computing: Azure, Cloud9, AWS
- NoSQL: AsterixDB, Souffle

• Git

The time spent learning the new technology is very useful: *write everything on your CV*!

DEADLINES AND LATE DAYS

Assignments are expected to be done on time, but things happen, so...

You have up to 3 late days

- No more than 2 on any one assignment
- Used in 24-hour chunks

Late days = safety net, not convenience!

- You should not plan on using them
- If you use all 3 you are doing it wrong

SEVEN WEB QUIZZES

- <u>http://newgradiance.com/</u>
- Create account; please make sure you use your UW first/last name
- Token to be provided to course email
- Short tests, take many times, best score counts
- No late days closes at 11:00 deadline
- **Provides explanations for wrong answers**

LECTURES

Slides contain vital information for exams

- May emphasize tricks or problem types off slides
- Posted after lecture
- Associated readings
 - Good for alternate explanations
 - (also I get a lot of inspiration for exam questions)

EXAMS

• Dates

- Midterm (TBA Late April/Early May)
- Final, Wednesday, June 6th, 8:30 10:20
- Preparation
 - Exam review

ABOUT ME

- Evan McCarty (ejmcc@cs.washington.edu)
- Theory and Algorithms research
- Data Scientist for Partners for Our Children
- Lecture notes posted after class
- Part-time Faculty
 - On campus MWF
 - Available by email

ABOUT STAFF

• TAs

- Sravan Konda
- Ariel Lin
- Xi Liu
- Michelle Prawiro
- Jason Tan
- First resource for coding / setup problems
- Office hours posted on Wednesday (start next week)

EXPECTATIONS ABOUT YOU

- CSE majors
- Half-asleep
- (Hopefully) registered
 - If not, talk with me after
- Academic Honesty and Participation
- Piazza and help

CLASS GOALS

The world is drowning in data!

Need computer scientists to help manage this data

- Help domain scientists achieve new discoveries
- Help companies provide better services (e.g., Facebook)
- Help governments (and universities!) become more efficient

Welcome to 344: Introduction to Data Management

- Existing tools PLUS data management principles
- This is not just a class on SQL!

• This course was my least favorite topic in undergrad

- This course was my least favorite topic in undergrad
- Now, I work with databases

- This course was my least favorite topic in undergrad
- Now, I work with databases
 - Intelligent design and organization of data allows important work and research to occur *efficiently* and *correctly*

- This course was my least favorite topic in undergrad
- Now, I work with databases
 - Intelligent design and organization of data allows important work and research to occur *efficiently* and *correctly*
- Organizations need a diverse set of skills, you may not ever need to manage a DB, but you will certainly be interfacing with one

- This course was my least favorite topic in undergrad
- Now, I work with databases
 - Intelligent design and organization of data allows important work and research to occur *efficiently* and *correctly*
- Organizations need a diverse set of skills, you may not ever need to manage a DB, but you will certainly be interfacing with one
- Decisions made in setting up a DB (or even a query) can affect performance going forward

- Disk and magnetic tape are linear storage
 - We can access elements throughout them, but there is a continuous serialization of this data.
 - Data itself is rarely one dimensional
 - Imagine storing all data about UW students on disk

- Disk and magnetic tape are linear storage
 - We can access elements throughout them, but there is a continuous serialization of this data.
 - Data itself is rarely one dimensional
 - Imagine storing all data about UW students on disk
- What is their order? Are students related?

- Disk and magnetic tape are linear storage
 - We can access elements throughout them, but there is a continuous serialization of this data.
 - Data itself is rarely one dimensional
 - Imagine storing all data about UW students on disk
- What is their order? Are students related?
 - Related relative to other data?
 - Why store "students" at all?

What is a database ?

What is a database ?

A collection of files storing related data

Give examples of databases

What is a database ?

A collection of files storing *related* data

Give examples of databases

Accounts database; payroll database; UW's students database; Amazon's products database; airline reservation database

DATABASE MANAGEMENT SYSTEM

What is a DBMS ?

DATABASE MANAGEMENT SYSTEM

What is a DBMS ?

A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Open source: MySQL (Sun/Oracle), PostgreSQL, CouchDB
- Open source library: SQLite

We will focus on relational DBMSs most quarter

What data do we need?

What data do we need?

- Data about books, customers, pending orders, order histories, trends, preferences, etc.
- Data about sessions (clicks, pages, searches)
- Note: data must be persistent! Outlive application
- Also note that data is large... won't fit all in memory

What data do we need?

- Data about books, customers, pending orders, order histories, trends, preferences, etc.
- Data about sessions (clicks, pages, searches)
- Note: data must be persistent! Outlive application
- Also note that data is large... won't fit all in memory

What capabilities on the data do we need?

What data do we need?

- Data about books, customers, pending orders, order histories, trends, preferences, etc.
- Data about sessions (clicks, pages, searches)
- Note: data must be persistent! Outlive application
- Also note that data is large... won't fit all in memory

What capabilities on the data do we need?

- Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, ...
- Data must be accessed efficiently, by many users
- Data must be safe from failures and malicious users

• What can go wrong?

- What can go wrong?
 - It depends on how well you store the data
 - Suppose we store everything we need in a big text file (or a .csv if we get fancy)

- What can go wrong?
 - It depends on how well you store the data
 - Suppose we store everything we need in a big text file (or a .csv if we get fancy)
 - Related data?
 - Concurrent access?
 - Consistency?
 - Runtime?
 - Planning?

WHAT A DBMS DOES

Describe real-world entities in terms of stored data

Persistently store large datasets

Efficiently query & update

- Must handle complex questions about data
- Must handle sophisticated updates
- Performance matters

Change structure (e.g., add attributes)

Concurrency control: enable simultaneous updates

Crash recovery

Security and integrity

THE PLAYERS

- DB application developer: writes programs that query and modify data (344)
- DB designer: establishes schema (344)
- DB administrator: loads data, tunes system, keeps whole thing running (344, 444)
- Data analyst: data mining, data integration (344, 446)
- **DBMS implementor: builds the DBMS (444)**

WHAT IS THIS CLASS ABOUT?

- **Unit 1: Intro (today)**
- Unit 2: Relational Data Models and Query Languages
- **Unit 3: Non-relational data**
- **Unit 4: RDMBS internals and query optimization**
- **Unit 5: Parallel query processing**
- Unit 6: DBMS usability, conceptual design
- **Unit 7: Transactions**
- **Unit 8: Advanced topics (time permitting)**

WHAT TO EXPECT SOON

- Course Website
- Syllabus
- Git tutorial / help
- The first HW assignment
- Piazza page
- Canvas page
- Link for online quizzes