CSE 344 Section 4 Worksheet

Relational Algebra \& Datalog

1. SQL to Relational Algebra. Write an expression in the form of a logical query plan (i.e., draw a tree) that is equivalent to each of the SQL query below:

Schema:	Clinic(cid, name, street, state)	// cid is the Clinic ID
	Equipment(eid, type, model)	// eid is the Equipment ID

Assignment(cid, eid)

SELECT COUNT (*)
FROM Clinic C
WHERE NOT EXISTS (SELECT * FROM Assignment A, Equipment E

```
WHERE C.cid = A.cid AND A.eid = E.eid
    AND E.type = 'Fridge' AND E.model = 1004);
```

B. Select the greatest difference in price between items exchanged between the same two people within the same category, for each category among all categories that have more than 5 such exchanges.

```
Schema: Item(oid, category, price)
    Gift(pid, rid, oid)
    Gift.pid: presenter ID
    Gift.pid: recipient ID
    Gift.oid is a foreign key to Item.oid
SELECT O1.category, max(abs(O1.price - O2.price))
    FROM Gift G1, Gift G2, Item O1, Item O2
    WHERE G1.pid = G2.rid AND G2.pid = G1.rid
    AND O1.oid = G1.oid AND O2.oid = G2.oid
    AND O1.category = O2.category GROUP BY O1.category
HAVING count(*) > 5;
```


2. Datalog

Consider a graph of colored vertices and undirected edges where the vertices can be red, green, blue. In particular, you have the relations:

```
Vertex(x, color)
Edge(x, y)
```

The Edge relation is symmetric in that if (x, y) is in Edge, then (y, x) is in Edge. Your goal is to write a datalog program to answer each of the following questions:
A. Find all green vertices.
B. Find all pairs of blue vertices connected by one edge.
C. Find all triangles where all the vertices are the same color. Output the three vertices and their shared color.
D. Find all vertices that don't have any neighbors.
E. Find all vertices such that they only have red neighbors.
F. Find all vertices such that they only have neighbors with the same color. Return the vertex and color.
G. For some vertex v, find all vertices connected to v by blue vertices (this one requires recursion).

