Introduction to Data Management
CSE 344

Unit 5: Parallel Data Processing

Parallel RDBMS
MapReduce
Spark

(4 lectures)
Introduction to Data Management
CSE 344

Spark
Announcement

• HW6 posted
 – We use Amazon Web Services (AWS)
 – Urgent: please sign up for AWS credits (see instructions on the homework)

• No classes on Monday (Veterans’ Day)
Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
 - Spark, Hadoop, parallel databases
- Unit 6: DBMS usability, conceptual design
- Unit 7: Transactions
- Unit 8: Advanced topics (time permitting)
Parallelism is of Increasing Importance

• Multi-cores:
 – Most processors have multiple cores
 – This trend will likely increase in the future

• Big data: too large to fit in main memory
 – Distributed query processing on 100x-1000x servers
 – Widely available now using cloud services
Performance Metrics for Parallel DBMSs

Nodes = processors, computers

• **Speedup:**
 – More nodes, same data ➔ higher speed

• **Scaleup:**
 – More nodes, more data ➔ same speed
Linear v.s. Non-linear Speedup

Speedup

Ideal

nodes (=P)

×1

×5

×10

×15

CSE 344 - 2018au
Linear v.s. Non-linear Scaleup

Batch Scaleup

nodes (\(=P\)) AND data size

\[\times 1 \quad \times 5 \quad \times 10 \quad \times 15 \]

Ideal
Why Sub-linear?

• Startup cost
 – Cost of starting an operation on many nodes

• Interference
 – Contention for resources between nodes

• Skew
 – Slowest node becomes the bottleneck
Spark

A Case Study of the MapReduce Programming Paradigm
Parallel Data Processing @ 2010
Spark

• Open source system from UC Berkeley
• Distributed processing over HDFS
• Differences from MapReduce (CSE322):
 – Multiple steps, including iterations
 – Stores intermediate results in main memory
 – Closer to relational algebra (familiar to you)
• Details:
 http://spark.apache.org/examples.html
Spark

• Spark supports interfaces in Java, Scala, and Python
 – Scala: extension of Java with functions/closures

• We will illustrate use the Spark Java interface in this class

• Spark also supports a SQL interface (SparkSQL), and compiles SQL to its native Java interface
Programming in Spark

• A Spark program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save…). Eager

• **Eager**: operators are executed immediately

• **Lazy**: operators are not executed immediately
 – A *operator tree* is constructed in memory instead
 – Similar to a relational algebra tree
Collections in Spark

• **RDD\(<T>\) = an RDD collection of type \(T\)**
 – Distributed on many servers, not nested
 – Operations are done in parallel
 – Recoverable via lineage; more later

• **Seq\(<T>\) = a sequence**
 – Local to one server, may be nested
 – Operations are done sequentially
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```java
s = SparkSession.builder().getOrCreate();

lines = s.read().textFile("hdfs://logfile.log");

errors = lines.filter(l -> l.startsWith("ERROR"));

sqlerrors = errors.filter(l -> l.contains("sqlite"));

sqlerrors.collect();
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

```
s = SparkSession.builder().getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:
• Start with “ERROR”
• Contain the string “sqlite”

```java
s = SparkSession.builder.getOrCreate();
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l -> l.startsWith("ERROR"));
sqlerrors = errors.filter(l -> l.contains("sqlite"));
sqlerrors.collect();
```

Transformation: Not executed yet...

Action: triggers execution of entire program
Example

Recall: anonymous functions (lambda expressions) starting in Java 8

```java
errors = lines.filter(l -> l.startsWith("ERROR"));
```

is the same as:

```java
class FilterFn implements Function<Row, Boolean>{
    Boolean call (Row r)
    { return l.startsWith("ERROR"); }
}
errors = lines.filter(new FilterFn());
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

```
s = SparkSession.builder().getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
   .filter(l -> l.startsWith("ERROR"))
   .filter(l -> l.contains("sqlite"))
   .collect();
```

“Call chaining” style
Example

The RDD s:

<table>
<thead>
<tr>
<th>Error...</th>
<th>Warning...</th>
<th>Warning...</th>
<th>Error...</th>
<th>Abort...</th>
<th>Abort...</th>
<th>Error...</th>
<th>Error...</th>
<th>Warning...</th>
<th>Error...</th>
</tr>
</thead>
</table>

```python
s = SparkSession.builder().getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
    .filter(l -> l.startsWith("ERROR"))
    .filter(l -> l.contains("sqlite"))
    .collect();
```
Example

The RDDs:

<table>
<thead>
<tr>
<th>Error...</th>
<th>Warning...</th>
<th>Warning...</th>
<th>Error...</th>
<th>Abort...</th>
<th>Abort...</th>
<th>Error...</th>
<th>Error...</th>
<th>Warning...</th>
<th>Error...</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter("ERROR")</td>
</tr>
</tbody>
</table>

```
s = SparkSession.builder().getOrCreate();
sqlerrors = s.read().textFile("hdfs://logfile.log").filter(l -> l.startsWith("ERROR"))
  .filter(l -> l.contains("sqlite"))
  .collect();
```
The RDD s:

```
s = SparkSession.builder().getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
  .filter(l -> l.startsWith("ERROR"))
  .filter(l -> l.contains("sqlite"))
  .collect();
```
s = SparkSession.builder()...getOrCreate();

sqlerrors = s.read().textFile("hdfs://logfile.log")
 .filter(l -> l.startsWith("ERROR"))
 .filter(l -> l.contains("sqlite"))
 .collect();
Fault Tolerance

• When a job is executed on x100 or x1000 servers, the probability of a failure is high

• Example: if a server fails once/year, then a job with 10000 servers fails once/hour

• Different solutions:
 – Parallel database systems: restart. Expensive.
 – MapReduce: write everything to disk, redo. Slow.
 – Spark: redo only what is needed. Efficient.
Resilient Distributed Datasets

• RDD = Resilient Distributed Dataset
 – Distributed, immutable and records its lineage
 – Lineage = expression that says how that relation was computed = a relational algebra plan

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply recompute the lost partition of the RDD
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

If any server fails before the end, then Spark must restart
Persistence

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

If any server fails before the end, then Spark must restart
Persistence

If any server fails before the end, then Spark must restart

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqllerrors = errors.filter(l->l.contains("sqlite"));
sqllerrors.collect();
```

Spark can recompute the result from errors

```scala
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
errors.persist();
sqllerrors = errors.filter(l->l.contains("sqlite"));
sqllerrors.collect();
```
Persistence

If any server fails before the end, then Spark must restart

```java
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```

Spark can recompute the result from errors

```java
lines = s.read().textFile("hdfs://logfile.log");
errors = lines.filter(l->l.startsWith("ERROR"));
errors.persist();
sqlerrors = errors.filter(l->l.contains("sqlite"));
sqlerrors.collect();
```
Example

```java
R = strm.read().textFile("R.csv").map(parseRecord).persist();
S = strm.read().textFile("S.csv").map(parseRecord).persist();
```

Parses each line into an object

Persisting on disk
Example

```
R = strm.read().textFile("R.csv").map(parseRecord).persist();
S = strm.read().textFile("S.csv").map(parseRecord).persist();
RB = R.filter(t -> t.b > 200).persist();
SC = S.filter(t -> t.c < 100).persist();
J = RB.join(SC).persist();
J.count();
```
Recap: Programming in Spark

• A Spark/Scala program consists of:
 – Transformations (map, reduce, join…). Lazy
 – Actions (count, reduce, save…). Eager

• RDD<T> = an RDD collection of type T
 – Partitioned, recoverable (through lineage), not nested

• Seq<T> = a sequence
 – Local to a server, may be nested
Transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(f : T -> U)</code></td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td><code>flatMap(f: T -> Seq(U))</code></td>
<td>RDD<T> -> RDD<U></td>
</tr>
<tr>
<td><code>filter(f:T->Bool)</code></td>
<td>RDD<T> -> RDD<T></td>
</tr>
<tr>
<td><code>groupByKey()</code></td>
<td>RDD<(K,V)> -> RDD<(K,Seq[V])></td>
</tr>
<tr>
<td><code>reduceByKey(F:(V,V)-> V)</code></td>
<td>RDD<(K,V)> -> RDD<(K,V)></td>
</tr>
<tr>
<td><code>union()</code></td>
<td>(RDD<T>,RDD<T>) -> RDD<T></td>
</tr>
<tr>
<td><code>join()</code></td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K,(V,W))></td>
</tr>
<tr>
<td><code>cogroup()</code></td>
<td>(RDD<(K,V)>,RDD<(K,W)>) -> RDD<(K, (Seq<V>,Seq[W])))</td>
</tr>
<tr>
<td><code>crossProduct()</code></td>
<td>(RDD<T>,RDD<U>) -> RDD<(T,U)></td>
</tr>
</tbody>
</table>

Actions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td>RDD<T> -> Long</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>RDD<T> -> Seq<T></td>
</tr>
<tr>
<td><code>reduce(f:(T,T)->T)</code></td>
<td>RDD<T> -> T</td>
</tr>
<tr>
<td><code>save(path:String)</code></td>
<td>Outputs RDD to a storage system e.g., HDFS</td>
</tr>
</tbody>
</table>
Spark 2.0

The DataFrame and Dataset Interfaces
DataFrames

• Like RDD, also an immutable distributed collection of data

• Organized into *named columns* rather than individual objects
 – Just like a relation
 – Elements are untyped objects called Row’s

• Similar API as RDDs with additional methods
 – `people = spark.read().textFile(...)`
 – `ageCol = people.col("age")`
 – `ageCol.plus(10); // creates a new DataFrame`
Datasets

• Similar to DataFrames, except that elements must be typed objects

• E.g.: Dataset<People> rather than Dataset<Row>

• Can detect errors during compilation time

• DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

• You will use both Datasets and RDD APIs in HW6
Datasets API: Sample Methods

• Functional API
 - `agg(Column expr, Column... exprs)`
 Aggregates on the entire Dataset without groups.
 - `groupBy(String col1, String... cols)`
 Groups the Dataset using the specified columns, so that we can run aggregation on them.
 - `join(Dataset<?> right)`
 Join with another DataFrame.
 - `orderBy(Column... sortExprs)`
 Returns a new Dataset sorted by the given expressions.
 - `select(Column... cols)`
 Selects a set of column based expressions.

• “SQL” API
 - `SparkSession.sql("select * from R");`

• Look familiar?
Introduction to Data Management
CSE 344

Parallel Databases
Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to speed up a query
- check your HW3 query plans

- Easy to use and program
- Expensive to scale
Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Example: Oracle

- No more memory contention
- Harder to program
- Still hard to scale: existing deployments typically have fewer than 10 machines
Shared Nothing

- Cluster of commodity machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

Example: Spark

Because all machines today have many cores and many disks, shared-nothing systems typically run many "nodes" on a single physical machine.

- Easy to maintain and scale
- Most difficult to administer and tune.

We discuss only Shared Nothing in class
Approaches to Parallel Query Evaluation

• **Inter-query parallelism**
 – Transaction per node
 – Good for transactional workloads

• **Inter-operator parallelism**
 – Operator per node
 – Good for analytical workloads

• **Intra-operator parallelism**
 – Operator on multiple nodes
 – Good for both?

We study only intra-operator parallelism: most scalable
Single Node Query Processing (Review)

Given relations R(A,B) and S(B, C), no indexes:

• **Selection**: $\sigma_{A=123}(R)$
 – Scan file R, select records with A=123

• **Group-by**: $\gamma_{A,\text{sum}(B)}(R)$
 – Scan file R, insert into a hash table using A as key
 – When a new key is equal to an existing one, add B to the value

• **Join**: $R \bowtie S$
 – Scan file S, insert into a hash table using B as key
 – Scan file R, probe the hash table using B
Distributed Query Processing

• Data is horizontally partitioned on servers

• Operators may require data reshuffling
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1 2 ... P
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Servers:

<table>
<thead>
<tr>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

<table>
<thead>
<tr>
<th>P</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which tuples go to what server?
Horizontal Data Partitioning

- **Block Partition:**
 - Partition tuples arbitrarily s.t. \(\text{size}(R_1) \approx \ldots \approx \text{size}(R_P) \)

- **Hash partitioned on attribute A:**
 - Tuple \(t \) goes to chunk \(i \), where \(i = h(t.A) \mod P + 1 \)
 - Recall: calling hash fn’s is free in this class

- **Range partitioned on attribute A:**
 - Partition the range of \(A \) into \(-\infty = v_0 < v_1 < \ldots < v_P = \infty \)
 - Tuple \(t \) goes to chunk \(i \), if \(v_{i-1} < t.A < v_i \)
Uniform Data v.s. Skewed Data

Let $R(K,A,B,C)$; which of the following partition methods may result in skewed partitions?

- **Block partition**
 - Uniform

- **Hash-partition**
 - On the key K
 - On the attribute A

Uniform may be skewed

Assuming a good hash function

E.g. when all records have the same value of the attribute A, then all records end up in the same partition

Keep this in mind in the next few slides
Parallel Execution of RA Operators: Grouping

Data: \(R(K,A,B,C) \)
Query: \(\gamma_{A,\text{sum}(C)}(R) \)

How to compute group by if:

- \(R \) is hash-partitioned on \(A \)?
- \(R \) is block-partitioned?
- \(R \) is hash-partitioned on \(K \)?
Parallel Execution of RA Operators: Grouping

Data: $R(K, A, B, C)$

Query: $\gamma_{A, \text{sum}(C)}(R)$

- R is block-partitioned or hash-partitioned on K

Diagram:

- Reshuffle R on attribute A
- Run grouping on reshuffled partitions
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\sum(C)}(R)$
 – Runtime: only consider I/O costs

• If we double the number of nodes P, what is the new running time?
 – Half (each server holds $\frac{1}{2}$ as many records)

• If we double both P and the size of R, what is the new running time?
 – Same (each server holds the same # of records)

But only if the data is without skew!
Skewed Data

• $R(K,A,B,C)$
• Informally: we say that the data is skewed if one server holds much more data that the average
• E.g. we hash-partition on A, and some value of A occurs very many times (“Justin Bieber”)
• Then the server holding that value will be skewed
Parallel Execution of RA Operators: Partitioned Hash-Join

- **Data**: \(R(K_1, A, B), S(K_2, B, C) \)
- **Query**: \(R(K_1, A, B) \bowtie S(K_2, B, C) \)
 - Initially, both \(R \) and \(S \) are partitioned on \(K_1 \) and \(K_2 \)

Reshuffle \(R \) on \(R.B \) and \(S \) on \(S.B \)

Each server computes the join locally
Data: \(R(K1, A, B), S(K2, B, C) \)
Query: \(R(K1, A, B) \bowtie S(K2, B, C) \)
Data: R(A, B), S(C, D)
Query: R(A, B) \bowtie_{B=C} S(C, D)

Broadcast Join

Why would you want to do this?
Putting it Together: Example Parallel Query Plan

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()
```
Example Parallel Query Plan

Node 1
- hash: h(o.item)
- select: date=today()
- scan: Order o

Node 2
- hash: h(o.item)
- select: date=today()
- scan: Order o

Node 3
- hash: h(o.item)
- select: date=today()
- scan: Order o

Order(oid, item, date), Line(item, …)
Example Parallel Query Plan

Node 1

hash

h(i.item)

scan

Item i

Node 2

hash

h(i.item)

scan

Item i

Node 3

hash

h(i.item)

scan

Item i

Order(oid, item, date), Line(item, ...)

date = today()

join

o.item = i.item

Order o

Node 1

Node 2

Node 3
Example Parallel Query Plan

Node 1

Join

Node 2

Join

Node 3

Join

Order(oid, item, date), Line(item, ...)

- Contains all orders and all lines where hash(item) = 1
- Contains all orders and all lines where hash(item) = 2
- Contains all orders and all lines where hash(item) = 3

Join

Join

Join

Join

Join

A Challenge

• Have P number of servers (say P=27 or P=1000)

• How do we compute this Datalog query in one step?

• $Q(x, y, z) :- R(x, y), S(y, z), T(z, x)$
A Challenge

- Have P number of servers (say P=27 or P=1000)
- How do we compute this Datalog query in one step? \(Q(x,y,z) = R(x,y), S(y,z), T(z,x) \)
- Organize the P servers into a cube with side \(P^{\frac{1}{3}} \)
 - Thus, each server is uniquely identified by \((i,j,k), i,j,k \leq P^{\frac{1}{3}}\)
HyperCube Join

• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?
 \[Q(x,y,z) = R(x,y), S(y,z), T(z,x) \]
• Organize the P servers into a cube with side \(P^{1/3} \)
 – Thus, each server is uniquely identified by \((i,j,k)\), \(i,j,k \leq P^{1/3}\)
• Step 1:
 – Each server sends \(R(x,y) \) to all servers \((h(x), h(y), *)\)
 – Each server sends \(S(y,z) \) to all servers \((*, h(y), h(z))\)
 – Each server sends \(T(x,z) \) to all servers \((h(x), *, h(z))\)
HyperCube Join

• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?
 \[Q(x,y,z) = R(x,y), S(y,z), T(z,x) \]
• Organize the P servers into a cube with side \(P^{\frac{1}{3}} \)
 – Thus, each server is uniquely identified by \((i,j,k) \), \(i,j,k \leq P^{\frac{1}{3}} \)
• Step 1:
 – Each server sends \(R(x,y) \) to all servers \(\langle h(x), h(y), \ast \rangle \)
 – Each server sends \(S(y,z) \) to all servers \(\langle \ast, h(y), h(z) \rangle \)
 – Each server sends \(T(x,z) \) to all servers \(\langle h(x), \ast, h(z) \rangle \)
• Final output:
 – Each server \((i,j,k) \) computes the query \(R(x,y), S(y,z), T(z,x) \) locally
HyperCube Join

• Have P number of servers (say P=27 or P=1000)
• How do we compute this Datalog query in one step?
 \[Q(x,y,z) = R(x,y), S(y,z), T(z,x) \]
• Organize the P servers into a cube with side \(P^{1/3} \)
 – Thus, each server is uniquely identified by \((i,j,k) \), \(i,j,k \leq P^{1/3} \)
• Step 1:
 – Each server sends \(R(x,y) \) to all servers \((h(x),h(y),*) \)
 – Each server sends \(S(y,z) \) to all servers \((*,h(y),h(z)) \)
 – Each server sends \(T(x,z) \) to all servers \((h(x),*,h(z)) \)
• Final output:
 – Each server \((i,j,k) \) computes the query \(R(x,y), S(y,z), T(z,x) \) locally
• Analysis: each tuple \(R(x,y) \) is replicated at most \(P^{1/3} \) times
\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
Q(x,y,z) = R(x,y),S(y,z),T(z,x)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>S1</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R2</th>
<th>S2</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R3</th>
<th>S3</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>y</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Hypercube join

Shuffle

What if
h(x): h(1) = h(3)
\[Q(x,y,z) = R(x,y), S(y,z), T(z,x) \]

<table>
<thead>
<tr>
<th>R1</th>
<th>S1</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R1'</th>
<th>S1'</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2</th>
<th>S2</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2'</th>
<th>S2'</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R3</th>
<th>S3</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R3'</th>
<th>S3'</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Diagram:
- **Partition**
 - P1: (1, 2, 7)
 - P2: (1, 2, 3)
 - P3: (3, 2, 3)

- **Shuffle**
 - What if \(h(x): h(1) = h(3) \)

- **Local Join**

Hypercube join
Introduction to Data Management
CSE 344

MapReduce
Announcements

• HW6 due tomorrow
• HW7 to be posted tomorrow; HW8 next week
• Makeup lectures:
 – Tuesday, Nov. 27, Room EEB 105
 – Tuesday, Dec. 4, Room EEB 105
• Canceled lectures:
 – Wednesday, Dec. 5
 – Friday, Dec. 7

Check the calendar!
Parallel Data Processing @ 2000
Optional Reading

• Original paper: https://www.usenix.org/legacy/events/osdi04/tech/dean.html

• Rebuttal to a comparison with parallel DBs: http://dl.acm.org/citation.cfm?doid=1629175.1629198

• Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman http://i.stanford.edu/~ullman/mmds.html
Motivation

• We learned how to parallelize relational database systems

• While useful, it might incur too much overhead if our query plans consist of simple operations

• MapReduce is a programming model for such computation

• First, let’s study how data is stored in such systems
Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into *chunks*, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google’s DFS: **GFS**, proprietary
 - Hadoop’s DFS: **HDFS**, open source
MapReduce

• Google: paper published 2004
• Free variant: Hadoop
• MapReduce = high-level programming model and implementation for large-scale parallel data processing
Typical Problems Solved by MR

• Read a lot of data
• **Map**: extract something you care about from each record
• Shuffle and Sort
• **Reduce**: aggregate, summarize, filter, transform
• Write the results

Paradigm stays the same, change map and reduce functions for different problems
Data Model

Files!

A file = a bag of \((key, value)\) pairs

A MapReduce program:
• Input: a bag of \((inputkey, value)\) pairs
• Output: a bag of \((outputkey, value)\) pairs
Step 1: the **MAP** Phase

User provides the **MAP**-function:

- **Input:** \((\text{input key}, \text{value})\)
- **Output:** bag of \((\text{intermediate key}, \text{value})\)

System applies the map function in parallel to all \((\text{input key}, \text{value})\) pairs in the input file.
Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
Comparison to Spark

MapReduce in Spark:

- `col.flatMap(f)` applies in parallel the predicate `f` to all elements `x` of the partitioned collection; for each `x`, `f(x)` is a list; then `flatMap` returns their concatenation.

- `col.reduceByKey(g)` applies in parallel the function `g` to all elements with a common key.
Jobs v.s. Tasks

• A MapReduce Job
 – One single “query”, e.g. count the words in all docs
 – More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
 – A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker
Workers

- A worker is a process that executes one task at a time

- Typically there is one worker per processor, hence 4 or 8 per node
Fault Tolerance

MapReduce handles fault tolerance by writing intermediate files to disk:

- Mappers write file to local disk
- Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server
MAP Tasks (M)

REDUCE Tasks (R)

Shuffle

CSE 344 - 2018au

87
MapReduce Execution Details

Reduce
(Shuffle)
Map

Task
Intermediate data goes to local disk: $M \times R$ files (why?)
Data not necessarily local
File system: GFS or HDFS

Output to disk, replicated in cluster

CSE 344 - 2018au
MapReduce Phases

Map Task

{P 1} Split → Record Reader → Map → Combine

Reduce Task

{P 3} Copy → Sort → Reduce

Local storage

HDFS

file
Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers’ local disks
Interesting Implementation Details

Worker failure:

- Master pings workers periodically,
- If down then reassigns the task to another worker
Interesting Implementation Details

Backup tasks:

• **Straggler** = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 – Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 – The cluster scheduler has scheduled other tasks on that machine

• Stragglers are a main reason for slowdown

• Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Straggler Example

Worker 1

Worker 2

Worker 3

Backup execution

Straggler

Killed
Using MapReduce in Practice:
Implementing RA Operators in MR
Relational Operators in MapReduce

Given relations $R(A, B)$ and $S(B, C)$ compute:

- **Selection:** $\sigma_{A=123}(R)$
- **Group-by:** $\gamma_{A,\text{sum}(B)}(R)$
- **Join:** $R \bowtie S$
Selection $\sigma_{A=123}(R)$

map(Tuple t):
 if $t.A = 123$:
 EmitIntermediate($t.A$, t);

<table>
<thead>
<tr>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>23</td>
</tr>
<tr>
<td>t_2</td>
<td>123</td>
</tr>
<tr>
<td>t_3</td>
<td>123</td>
</tr>
<tr>
<td>t_4</td>
<td>42</td>
</tr>
</tbody>
</table>

reduce(String A, Iterator values):
 for each v in values:
 Emit(v);

(123, [t_2, t_3])

(t_2, t_3)
Selection $\sigma_{A=123}(R)$

(map(String value):
 if value.A = 123:
 EmitIntermediate(value.key, value);
)

reduce(String k, Iterator values):
 for each v in values:
 Emit(v);

No need for reduce.
But need system hacking in Hadoop
 to remove reduce from MapReduce
Group By $\gamma_A,\text{sum}(B)(R)$

map(Tuple t):
EmitIntermediate(t.A, t.B);

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>t2</td>
<td>123</td>
<td>21</td>
</tr>
<tr>
<td>t3</td>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td>t4</td>
<td>42</td>
<td>6</td>
</tr>
</tbody>
</table>

reduce(String A, Iterator values):

\[
\begin{align*}
 s &= 0 \\
 \text{for each } v \text{ in values:} & \\
 s &= s + v \\
 \text{ Emit}(A, s); & \\
\end{align*}
\]

(23, [t1]), (42, [t4]), (123, [t2, t3])

(23, 10), (42, 6), (123, 25)
Join

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join
R(A,B) \bowtie_{B=C} S(C,D)

Partitioned Hash-Join

Initially, both R and S are horizontally partitioned

Reshuffle R on R.B and S on S.B

Each server computes the join locally
Partitioned Hash-Join

\[
R(A,B) \bowtie_{B=C} S(C,D)
\]

map(Tuple \(t \)):
- case \(t.\text{relationName} \) of
 - ‘R’: EmitIntermediate(t.B, t);
 - ‘S’: EmitIntermediate(t.C, t);

reduce(String \(k \), Iterator \(values \)):
- \(R = \text{empty} \);
- \(S = \text{empty} \);
- for each \(v \) in \(values \):
 - case \(v.\text{relationName} \) of:
 - ‘R’: \(R.\text{insert}(v) \)
 - ‘S’: \(S.\text{insert}(v) \);
 - for \(v_1 \) in \(R \), for \(v_2 \) in \(S \)
 - Emit(\(v_1, v_2 \));

actual tuple:
- \((5, [t_1, t_3, t_4]) \)
- \((6, [t_2, t_5]) \)

\begin{array}{|c|c|}
\hline
A & B \\
\hline
t_1 & 10 & 5 \\
t_2 & 20 & 6 \\
t_3 & 20 & 5 \\
\hline
\end{array}

\begin{array}{|c|c|}
\hline
C & D \\
\hline
t_4 & 5 & 2 \\
t_5 & 6 & 10 \\
\hline
\end{array}
Broadcast Join

R(A,B) \bowtie_{B=C} S(C,D)

Reshuffle R on R.B

Broadcast S

R_1 \rightarrow R_1', S
R_2 \rightarrow R_2', S
\ldots
R_p \rightarrow R_p', S

S
Broadcast Join

map(String value):
 open(S); /* over the network */
 hashTbl = new()
 for each w in S:
 hashTbl.insert(w.C, w)
 close(S);

 for each v in value:
 for each w in hashTbl.find(v.B)
 Emit(v,w);

reduce(…):
 /* empty: map-side only */

R(A,B) ⋈_{B=C} S(C,D)
Summary

• MapReduce: simple abstraction, distribution, fault tolerance
• Load balancing (needed for speedup): by dynamic task allocation; skew still possible
• Writing intermediate results to disk is necessary for fault tolerance, but very slow.
• Spark replaces this with “Resilient Distributed Datasets” = main memory + lineage