Introduction to Data Management
CSE 344

Lecture 25: MapReduce and Spark
Today

• MapReduce Review

• Spark
Review: Map Reduce Data Model

Started by Google in 2004

Instance: Files containing (key, value) pairs

Schema: None!
- just like other key-value data models

Query language: a MapReduce program:
- Input: a bag of (key, value) pairs
- Output: a bag of (key, value) pairs
- Implementation in Java (Hadoop), Python, Go, …
Review:
Lifecycle of a MR Program

1. Read a lot of data and parse into (key, value) pairs
2. Map: extract something you care about from each (key, value) pair
3. Shuffle output from mappers
 – done internally by implementation
4. Reduce: aggregate, summarize, filter, transform
5. Write the results to files

Paradigm stays the same,
change map and reduce functions for different problems
Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The **key** = document id (**did**)
 - The **value** = set of words (**word**)

```java
map(String key, String value):
  // key: document name
  // value: document contents
  for each word w in value:
    EmitIntermediate(w, "1");

reduce(String key, Iterator values):
  // key: a word
  // values: a list of "1"s
  int result = 0;
  for each v in values:
    result += ParseInt(v);
    Emit(AsString(result));
```
Fault Tolerance

• If one server fails once every year...
 ... then a job with 10,000 servers will fail in
 less than one hour

• MapReduce handles fault tolerance by writing
 intermediate files to disk:
 – Mappers write file to local disk
 – Reducers read the files (=reshuffling); if the server
 fails, the reduce task is restarted on another
 server
Using MapReduce in Practice:
Implementing RA Operators in MR
Selection $\sigma_{A=42}(R)$

```java
map(String relationName, Tuple t):
    if t.A == 42:
        EmitIntermediate(relationName, t);
```

```java
reduce(String k, Iterator values):
    for each v in values:
        Emit(v);
```
Selection $\sigma_{A=42}(R)$

map(String relationName, Tuple t):
 if t.A == 42:
 EmitIntermediate(relationName, t);

reduce(String k, Iterator values):
 for each v in values:
 Emit(v);

- Reduce isn’t really needed
- But MR requires reduce functions
Group By $\gamma_{A,\text{sum}(B)}(R)$

map(String relationName, Tuple t):
 EmitIntermediate(t.A, t.B);

reduce(String k, Iterator values):
 s = 0
 for each v in values:
 s = s + v
 Emit(k, v);

Can’t use hashtable to map A’s to B’s
Implementing Join in MR

Two parallel join algorithms that we have seen:

• Partitioned hash-join

• Broadcast join
Parallel Execution of RA Operators: Partitioned Hash-Join

- **Data**: \(R(K1,A,B), S(K2,B,C) \)
- **Query**: \(R(K1,A,B) \bowtie S(K2,B,C) \)
 - Initially, both \(R \) and \(S \) are partitioned on \(K1 \) and \(K2 \)

Reshuffle \(R \) on \(R.B \) and \(S \) on \(S.B \)

Each server computes the join locally
\(R(A,B) \bowtie_{B=C} S(C,D) \)

Partitioned Hash-Join in MR

```java
map(String relationName, Tuple t):
    switch (relationName):
        case 'R': EmitIntermediate(t.B, IntKey('R', value))
        case 'S': EmitIntermediate(t.C, IntKey('S', value))

reduce(String k, Iterator values):
    R = [] S = []
    for each v in values:
        switch (v.relationName):
            'R': R.insert(v.value)
            'S': S.insert(v.value)
    for r in R, for s in S:
        Emit(Tuple(r,s))
```

Or call hash(t.B)

Relation name

value

All tuples here must join
Data: $R(A, B), S(C, D)$
Query: $R(A, B) \bowtie_{B=C} S(C, D)$

Broadcast Join

Broadcast S

Reshuffle R on $R.B$
$R(A,B) \bowtie_{B=C} S(C,D)$

Broadcast Join in MR

```java
map(String relationName, Tuple [] rs):
    S = readFromNetwork()
    ht = new Hashtable()
    for each w in S:
        ht.insert(w.C, w)

    for each r in ts:
        for each s in ht.find(r.B):
            Emit(Tuple(r,s))
```

reduce(...):
/* empty: map-side only */
Issues with MapReduce

• Difficult to write complex queries
 – Nested queries
 – Correlated queries?

• Fault tolerance: only persists results between map / reduce

• Need multiple MR jobs: dramatically slows down because each job writes all results to disk
Parallel Data Processing @ 2010
Spark

• Open source system from Berkeley
• Distributed processing over HDFS
• Differences from MapReduce:
 – Not restricted to pairs of mapper and reducer
 – User decides when to persist results

• Details: http://spark.apache.org/examples.html
Spark Data Model

Instance: Resilient Distributed Datasets (RDDs)

Schema: None! (just like MR)

Query language: a Spark program
- Implementation in Scala / Java / SQL
- Scala = extension of Java with functions/closures
RDD

• RDD = Resilient Distributed Datasets
 – A distributed relation, together with its lineage
 – Lineage: expression that says how that relation was computed

• Spark stores intermediate results as RDD

• If a server crashes, its RDD in main memory is lost. However, the driver (=master node) knows the lineage, and will simply recompute the lost partition of the RDD
How does Spark store lineage?

- A Spark/Scala program consists of:
 - Transformations (map, reduce, join...). **Lazily evaluated**
 - Only record the function to invoke, actual work not done
 - Actions (count, reduce, save...). **Eagerly evaluated**
 - Really performs work
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

- Start with “ERROR”
- Contain the string “sqlite”

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
Example

Given a large log file hdfs://logfile.log retrieve all lines that:

• Start with “ERROR”
• Contain the string “sqlite”

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
sqlerrors.collect()
```
Persistence

```scala
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
sqlerrors = errors.filter(_.contains("sqlite"));
result = sqlerrors.collect();
```

If any server fails before collect, then the entire job is restarted
lines = spark.textFile("hdfs://logfile.log");
errors = lines.filter(_.startsWith("ERROR"));
errors.persist();
sqlerrors = errors.filter(_.contains("sqlite"));
result = sqlerrors.collect();

Spark can recompute the result from errors.
Transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(f : T => U)</code></td>
<td><code>RDD[T] => RDD[U]</code></td>
</tr>
<tr>
<td><code>flatMap(f : T => Seq(U))</code></td>
<td><code>RDD[T] => RDD[U]</code></td>
</tr>
<tr>
<td><code>filter(f:T=>Bool)</code></td>
<td><code>RDD[T] => RDD[T]</code></td>
</tr>
<tr>
<td><code>groupByKey()</code></td>
<td><code>RDD[(K,V)] => RDD[(K,Seq[V])]</code></td>
</tr>
<tr>
<td><code>reduceByKey(F:(V,V) => V)</code></td>
<td><code>RDD[(K,V)] => RDD[(K,V)]</code></td>
</tr>
<tr>
<td><code>union()</code></td>
<td><code>(RDD[T],RDD[T]) => RDD[T]</code></td>
</tr>
<tr>
<td><code>join()</code></td>
<td><code>(RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(V,W))]</code></td>
</tr>
<tr>
<td><code>cogroup()</code></td>
<td><code>(RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(Seq[V],Seq[W]))]</code></td>
</tr>
<tr>
<td><code>crossProduct()</code></td>
<td><code>(RDD[T],RDD[U]) => RDD[(T,U)]</code></td>
</tr>
</tbody>
</table>

Actions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td><code>RDD[T] => Long</code></td>
</tr>
<tr>
<td><code>collect()</code></td>
<td><code>RDD[T] => Seq[T]</code></td>
</tr>
<tr>
<td><code>reduce(f:(T,T)=>T)</code></td>
<td><code>RDD[T] => T</code></td>
</tr>
<tr>
<td><code>save(path:String)</code></td>
<td>Outputs RDD to a storage system e.g. HDFS</td>
</tr>
</tbody>
</table>
Conclusions

• Parallel databases
 – Predefined relational operators
 – Optimization using standard RA techniques
 – Transaction support is free

• MapReduce
 – User-defined map and reduce functions
 – Must implement/optimize manually relational ops
 – No updates/transactions

• Spark
 – Predefined relational operators
 – Must optimize manually
 – No updates/transactions