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Announcements

• WQ7 due tonight
• HW7 due on Wednesday
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Final Exam
• Thursday 3/16, 2:30-4:20pm

– Location: Here!

• You can bring two letter-sized sheets of notes
– You can write on both sides
– You can type / handwrite / print etc

• Exam will be comprehensive
– Includes all lectures, readings, sections, HWs, WQs

• Final review session this Saturday 3/11
– EEB 105, 1-2pm
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Welcome to the 2nd half of 344

4

• Relational data model
– Instance
– Schema
– Query languages

• SQL, RA, RC, Datalog

• Query processing
– Logical & physical plans
– Indexes
– Cost estimation
– Query optimization

• Non-relational data model

• Conceptual design
– E/R diagrams
– Converting to SQL
– Normalization

• Transactions
– ACID
– Transaction Implementation
– Writing DB applications

• Parallel query processing
– MapReduce
– Spark



Today

• Architecture of parallel DBMSs

• Distributing data to multiple machines

• Executing relational query operators in 
parallel

• Alternative data models for parallel DBMSs
CSE 344 - Winter 2017 5



Why compute in parallel?

• Multi-cores:
– Most processors have multiple cores
– This trend will increase in the future

• Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x 

servers
– Widely available now using cloud services
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Performance Metrics 
for Parallel DBMSs

Nodes = processors, computers

• Speedup: 
– More nodes, same data è higher speed

• Scaleup:
– More nodes, more data è same speed
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Linear v.s. Non-linear Speedup
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# nodes (=P)

Speedup
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×1 ×5 ×10 ×15



Linear v.s. Non-linear Scaleup

# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15
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Why Sub-linear Speedup and 
Scaleup?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew
– Slowest node becomes the bottleneck
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a 
single machine and can leverage 
many threads to speed up a query
• check your HW3 query plans

• Easy to use and program
• Expensive to scale

– last remaining cash cows in the 
hardware industry
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Shared Disk
• All nodes access the same disks
• Found in the largest "single-box" 

(non-cluster) multiprocessors

Example: Oracle

• No need to worry about shared 
memory

• Hard to scale: existing 
deployments typically have fewer 
than 10 machines
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Shared Nothing
• Cluster of commodity machines on 

high-speed network
• Called "clusters" or "blade servers”
• Each machine has its own memory 

and disk: lowest contention.

Example: Google

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on 
a single physical machine.

• Easy to maintain and scale
• Most difficult to administer and tune.
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Parallel Data Processing @ 1990
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Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– Good for transactional workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?
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Single Node Query Processing 
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection:  σA=123(R)
– Scan file R, select records with A=123

• Group-by:  γA,sum(B)(R)
– Scan file R, insert into a hash table using A as key
– When a new key is equal to an existing one, add B to the value

• Join:  R ⋈ S
– Scan file S, insert into a hash table using B as key
– Scan file R, probe the hash table using B
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Distributed Query Processing

• Data is horizontally partitioned on many 
servers

• Operators may require data reshuffling

• First let’s discuss how to distribute data 
across multiple nodes / servers
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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K A B
… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?



Horizontal Data Partitioning
• Block Partition: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1
– Recall: calling hash fn’s is free in this class

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following 

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition
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Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute group by if:

• R is hash-partitioned on A ?

• R is block-partitioned ?

• R is hash-partitioned on K ?
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Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1 R2 RP .  .  .

R1’ R2’ RP’
.  .  .

Reshuffle R
on attribute A

CSE 344 - Winter 2017

Run grouping 
on reshuffled

partitions



Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: only consider I/O costs

• If we double the number of nodes P, what is 
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is 
the new running time?
– Same (each server holds the same # of chunks)

CSE 344 - Winter 2017 25



Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)
• Query: R(K1, A, B) ⋈ S(K2, B, C)

– Initially, both R and S are partitioned on K1 and K2

26

R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally
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Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)
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