
Introduction to Data Management
CSE 344

Lecture 22:
More Transaction
Implementations

CSE 344 - Winter 2017 1

Review:
Schedules, schedules, schedules

• The DBMS scheduler determines the order of operations from
txns are executed

• A serial schedule is one in which transactions are executed one
after the other, in some sequential order

• A schedule is serializable if it is equivalent to a serial schedule

• A schedule is conflict serializable if it has the same conflicts as a
serial schedule

• Conflicts: data dependencies between two ops that, if
swapped, will lead to different program behavior

2

A Tale of

3

2PL: In every transaction, all lock requests
must precede all unlock requests

Who gets lock first can lead to inconsistencies

All locks are held until the transaction
commits or aborts.

Schedules are conflict-serializable but not recoverable

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Letting threads R/W data freely leads to inconsistencies
Grab locks on element before R/W

Are We Done? No
Deadlocks

• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• T3 waits for
• . . .
• Tn waits for a lock held by T1

4CSE 344 - Winter 2017

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

5CSE 344 - Winter 2017

None S X
None

S
X

Lock compatibility matrix:

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

6CSE 344 - Winter 2017

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

7

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 344 - Winter 2017

Lock Performance

CSE 344 - Winter 2017 8

Th
ro

ug
hp

ut
 (T

PS
)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

9

Are We Done? No
Phantom Problem

• So far we have assumed the database to
be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

CSE 344 - Winter 2017

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSE 344 - Winter 2017 10

Phantom Problem

11

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 344 - Winter 2017

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

13

Phantom Problem

• A “phantom” is a tuple that is
invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 344 - Winter 2017

Dealing With Phantoms

• Lock the entire table
• Lock the index entry for ‘blue’

– If index is available
• Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !
CSE 344 - Winter 2017 14

15

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSE 344 - Winter 2017

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

16

Possible problems: dirty and inconsistent reads

CSE 344 - Winter 2017

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

17

Unrepeatable reads:
When reading same element twice,
may get two different values

CSE 344 - Winter 2017

3. Isolation Level: Repeatable
Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

18

This is not serializable yet !!!

Why ?

CSE 344 - Winter 2017

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

19CSE 344 - Winter 2017

Beware!
In commercial DBMSs:
• Default level is often NOT serializable
• Default level differs between DBMSs
• Some engines support subset of levels!
• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity
• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs
• Bottom line: Read the doc for your DBMS!

CSE 344 - Winter 2017 20

In-Class Exercise
• Draw the precedence graph for these

schedules and the corresponding serial
schedules:

R2(Y);W2(Y);R3(Y);R1(X);W1(X);W3(Y);R2(X);R1(Y);W1(Y)

R3(Y);R3(Z);R1(X);W1(X);W3(Y);R2(Z);R1(Y);R2(X);W1(Y);
W2(X)

CSE 344 – Winter 2017 21

In-Class Exercise
R2(Y);W2(Y);R3(Y);R1(X);W1(X);W3(Y);R2(X);R1(Y);W1(Y)

CSE 344 – Winter 2017 22

1 2 3

R3(Y);R3(Z);R1(X);W1(X);W3(Y);R2(Z);R1(Y);R2(X);W1(Y);W2(X)

3 1 2

