
Introduction to Data Management
CSE 344

Lecture 21:
Transaction Implementations

CSE 344 - Winter 2017 1

Announcements

• WQ7 and HW7 are out
– Due next Mon and Wed
– Start early, there is little time!

CSE 344 - Winter 2017 2

3

Review: ACID
• Atomic

– State shows either all the effects of txn, or none of them
• Consistent

– Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?
• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

CSE 344 - Winter 2017

Review:
Schedules, schedules, schedules

• The DBMS scheduler determines the order of
operations from txns are executed

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• A schedule is serializable if it is equivalent to a serial
schedule

• A schedule is conflict serializable if it has the same
conflicts as a serial schedule 4

Review: Conflicts
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 344 - Winter 2017 5

Conflict Serializability

• How to show that a schedule has the
same conflicts as a serial schedule?

• Show that it can be transformed into a
serial schedule!
– By moving the non conflicting operations

around

6

Conflict Serializability

CSE 344 - Winter 2017 7

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2017 8

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2017 9

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2017 10

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2017 11

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 344 - Winter 2017 12

Example 1

CSE 344 - Winter 2017 13

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 344 - Winter 2017 14

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 344 - Winter 2017 15

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 344 - Winter 2017 16

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Implementing a Scheduler

CSE 344 - Winter 2017 17

Implementing a Scheduler

• Real-world DBMSs runs multiple threads
– Each thread executes a txn

• How to ensure that the resulting threads
implement a conflict serializable schedule?

CSE 344 - Winter 2017 18

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - Winter 2017 19

Executed by
thread #2Executed by

thread #1

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If lock is taken by another transaction, then wait
• The transaction must release the lock(s)

CSE 344 - Winter 2017 20

By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 344 - Winter 2017 21

SQLite

• SQLite is very simple
• More info: http://www.sqlite.org/atomiccommit.html

• Lock types
– READ LOCK (to read)
– RESERVED LOCK (to write)
– PENDING LOCK (wants to commit)
– EXCLUSIVE LOCK (to commit)

CSE 344 - Winter 2017 22More details in the following slides

SQLite

Step 1: when a transaction begins

• Acquire a READ LOCK (aka "SHARED" lock)
• All these transactions may read happily
• They all read data from the database file
• If the transaction commits without writing

anything, then it simply releases the lock

CSE 344 - Winter 2017 23

SQLite

Step 2: when one transaction wants to write
• Acquire a RESERVED LOCK
• May coexists with many READ LOCKs
• Writer TXN may write; these updates are only

in main memory; others don't see the updates
• Reader TXN continue to read from the file
• New readers accepted
• No other TXN is allowed a RESERVED LOCK

CSE 344 - Winter 2017 24

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks
• Acquire a PENDING LOCK
• May coexists with old READ LOCKs
• No new READ LOCKS are accepted
• Wait for all read locks to be released

CSE 344 - Winter 2017 25

Why not write
to disk right now?

SQLite

Step 4: when all read locks have been released
• Acquire the EXCLUSIVE LOCK
• Nobody can touch the database now
• All updates are written permanently to the

database file

• Release the lock and COMMIT

CSE 344 - Winter 2017 26

SQLite

CSE 344 - Winter 2017 27

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

CSE 344 - Winter 2017 28

Demonstrating Locking in SQLite

T1:
begin transaction;
select * from r;
-- T1 has a READ LOCK

T2:
begin transaction;
select * from r;
-- T2 has a READ LOCK

CSE 344 - Winter 2017 29

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:
update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Winter 2017 30

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

CSE 344 - Winter 2017 31

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Winter 2017 32

Demonstrating Locking in SQLite

T3':
begin transaction;
select * from r;
-- T3 asked for READ LOCK-- DENIED (due to

T1)

T2:
commit;
-- releases the last READ LOCK; T1 can commit

Now for something more serious…

34CSE 344 - Winter 2017

More Notations

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

35CSE 344 - Winter 2017

A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

36CSE 344 - Winter 2017

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

37CSE 344 - Winter 2017Scheduler has ensured a conflict-serializable schedule

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

38
Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 344 - Winter 2017 39

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

40CSE 344 - Winter 2017

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
41CSE 344 - Winter 2017

Strict 2PL

CSE 344 - Winter 2017 42

All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback

U1(A);U1(B); …GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
Commit
U2(A); U2(B); 43

Another problem: Deadlocks
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• T3 waits for
• . . .
• Tn waits for a lock held by T1

44CSE 344 - Winter 2017

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

