
Introduction to Data Management
CSE 344

Lecture 20: More Transactions

CSE 344 - Winter 2017 1

Announcements

• HW7 (final one!) will be released today
– Some Java programming required
– Connecting to SQL Azure
– Due Wednesday, March 8

• WQ7 (final one!) released
– Due Monday, March 6

CSE 344 - Winter 2017 2

Outline

• Serial and Serializable Schedules (18.1)

• Conflict Serializability (18.2)

• Transaction implementation using locks (18.3)

CSE 344 - Winter 2017 3

4

Review: Transactions
• Problem: An application must perform several

writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called a Transaction

CSE 344 - Winter 2017

Turing Awards in Data Management

CSE 344 - Winter 2017
5

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

Review: Transactions in SQL

CSE 344 - Winter 2017 6

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction

7

Know your chemistry
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a DBMS state where integrity holds, to

another where integrity holds
• remember integrity constraints?

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSE 344 - Winter 2017

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
• Example: move $100 from A to B

– UPDATE accounts SET bal = bal – 100
WHERE acct = A;

– UPDATE accounts SET bal = bal + 100
WHERE acct = B;

– BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100 WHERE
acct = A;
UPDATE accounts SET bal = bal + 100 WHERE
acct = B;
COMMIT; 8CSE 344 - Winter 2017

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

• More in a few slides

CSE 344 - Winter 2017 9

Consistent
• Recall: integrity constraints govern how values in

tables are related to each other
– Can be enforced by the DBMS, or ensured by the app

• How consistency is achieved by the app:
– App programmer ensures that txns only takes a

consistent DB state to another consistent state
– DB makes sure that txns are executed atomically

• Can defer checking the validity of constraints
until the end of a transaction

CSE 344 - Winter 2017 10

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How?
– By writing to disk!
– More in 444

CSE 344 - Winter 2017 11

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

• What are examples of such program states?

CSE 344 - Winter 2017 12

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How do we prevent unwanted interference?
• The SCHEDULER is responsible for that

CSE 344 - Winter 2017 13

Schedules

CSE 344 - Winter 2017 14

A schedule is a sequence
of interleaved actions
from all transactions

Review: Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Review: nothing can go wrong if the system
executes transactions serially (up to what we have
learned so far)
– But DBMS don’t do that because we want better overall

system performance

15CSE 344 - Winter 2017

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 344 - Winter 2017 16

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - Winter 2017 17

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Winter 2017 18

Ti
m

e

Review: Serializable Schedule

CSE 344 - Winter 2017 19

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 344 - Winter 2017 20

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Winter 2017 21

How do We Know if a Schedule
is Serializable?

CSE 344 - Winter 2017 22

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSE 344 - Winter 2017 23

Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 344 - Winter 2017 24

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable

CSE 344 - Winter 2017 25

Conflict Serializability

CSE 344 - Winter 2017 26

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2017 27

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

