Announcements

• WQ6, HW6 due next Monday

• WQ7, HW7 will be out next Monday
Schema Refinements

= Normal Forms

• 1st Normal Form = all tables are flat
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = no bad FDs
• 3rd and 4th Normal Form = see book
 – BCNF is lossless but can cause loss of ability to check some FDs (see book 3.4.4)
 – 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies
 – 4NF deals with multi-valued dependencies (see book 3.6)
Data Management Pipeline

Conceptual Schema

Schema designer

Application programmer

Database administrator

Physical Schema

- name
- product
- price

Application: product, price

Database: product, price
Transactions

• We use database transactions everyday
 – Bank $$$ transfers
 – Online shopping
 – Signing up for classes

• For this class, a transaction is a series of DB queries
 – Read / Write / Update / Delete / Insert
 – Unit of work issued by a user that is independent from others
What’s the big deal?
Challenges

• Want to execute many apps concurrently
 – All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
 – What’s the problem?

• Want: multiple operations to be executed
 atomically over the same DBMS
What can go wrong?

• Manager: balance budgets among projects
 – Remove $10k from project A
 – Add $7k to project B
 – Add $3k to project C

• CEO: check company’s total balance
 – SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read aka a WRITE-READ conflict
What can go wrong?

• App 1:

 SELECT inventory FROM products WHERE pid = 1

• App 2:

 UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:

 SELECT inventory * price FROM products
 WHERE pid = 1

• This is known as an unrepeatable read
 aka READ-WRITE conflict
What can go wrong?

Account 1 = $100
Account 2 = $100
Total = $200

- **App 1:**
 - Set Account 1 = $200
 - Set Account 2 = $0

- **App 2:**
 - Set Account 2 = $200
 - Set Account 1 = $0

- **At the end:**
 - Total = $200

- **App 1:** Set Account 1 = $200
- **App 2:** Set Account 2 = $200

- **App 1:** Set Account 2 = $0
- **App 2:** Set Account 1 = $0

- **At the end:**
 - Total = $0

This is called the lost update aka **WRITE-WRITE** conflict
What can go wrong?

• Buying tickets to the next Bieber concert:
 – Fill up form with your mailing address
 – Put in debit card number
 – Click submit
 – Screen shows money deducted from your account
 – [Your browser crashes]

Lesson:
Changes to the database should be ALL or NOTHING
Transactions

- Collection of statements that are executed atomically (logically speaking)

```
BEGIN TRANSACTION
  [SQL statements]
COMMIT or ROLLBACK (=ABORT)
```

If `BEGIN`... missing, then TXN consists of a single instruction
In-class Exercise

- Given 3 relations: \(R(A, B, C) \), \(S(C, D) \), \(T(D, A) \)
 - Show the key of the query’s answer, and compute \(D^+ \):
 - select \(R.A, R.B, R.C, S.D \) from \(R, S \) where \(R.C = S.C \) and \(R.A = 20 \);
 - Key =
 - \(D^+ = \)
 - select \(T.A, S.C, S.D \) from \(S, T \) where \(S.D = T.D \);
 - Key =
 - \(D^+ = \)
In-class Exercise

• Given 3 relations: \(R(A, B, C) \), \(S(C, D) \), \(T(D, A) \)

 Show the key of the query’s answer, and compute \(D^+ \):

 select \(R.A, R.B, R.C, S.D \) from \(R, S \) where \(R.C = S.C \) and \(R.A = 20 \);

 \[\text{Key} = BD \quad \text{\(D^+ = ACD \)} \]

 select \(T.A, S.C, S.D \) from \(S, T \) where \(S.D = T.D \);

 \[\text{Key} = AD \quad \text{\(D^+ = CD \)} \]
Transactions Demo
Serial execution

• **Definition**: A SERIAL execution of transactions is one where each transaction is executed one after another.

• **Fact**: Nothing can go wrong if the DB executes transactions serially
 – (Up to everything that we have learned so far)

• **Definition**: A SERIALIZABLE execution of transactions is one that is equivalent to a serial execution