Introduction to Data Management CSE 344

Lecture 16: E/R Diagrams and Constraints

Announcements

- HW6, WQ6 are out
 - Both due 2/27
- One more HW after that

Midterm

- Stats:
 - Mean: 73
 - Standard deviation: 13
- Check your UW email to access gradescope
- Solutions posted under "exams" on website
- Retrieve paper copies of your exam from CSE front desk until 3/1 (after which they will be recycled)
- Regrade policy:
 - Submit on gradescope by 2/22
 - Cleary state how you were misgraded
 - We will regrade the entire problem after deadline

Ask the staff...

- TA lectures not very effective
- Taping lectures
- Course grading
- Reminder: please sit in the back if you use your laptop to take notes
 - But please not sit in the last 3 rows
- Reminder: Keep comments coming via piazza / feedback link on website!

Meanwhile in data management...

Welcome to the 2nd half of 344

- Relational data model
 - Instance
 - Schema
 - Query languages
 - SQL, RA, RC, Datalog
- Query processing
 - Logical & physical plans
 - Indexes
 - Cost estimation
 - Query optimization
- Non-relational data model

- Conceptual design
 - E/R diagrams
 - Converting to SQL
 - Normalization
- Transactions
 - ACID
 - Transaction Implementation
 - Writing DB applications
- Parallel query processing
 - MapReduce
 - Spark

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

 The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
 - UML, model-driven architecture
- Reading: Sec. 4.1-4.6

Database Design Process

Entity / Relationship Diagrams

- Entity set = a class
 An entity = an object
- Attribute
- Relationship

Product

city

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

- A mathematical definition:
 if A, B are sets, then a relation R is a subset of A X B
- A={1,2,3}, B={a,b,c,d}, A X B = {(1,a),(1,b), ..., (3,d)} R = {(1,a), (1,c), (3,b)}
- makes is a subset of Product X Company:

d

a

3

B=

Multiplicity of E/R Relations

one-one: a 2 b 3 С many-one • а 2 b 3 С d many-many • 2

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How ?)

As a set of triples \subseteq Person X Product X Store

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E] CSE 344 - Winter 2017

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

3. Design Principles

Moral: Be faithful to the specifications of the application!

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation