Introduction to Data Management
CSE 344

Lecture 16: E/R Diagrams and Constraints
Announcements

• HW6, WQ6 are out
 – Both due 2/27

• One more HW after that
Midterm

• Stats:
 – Mean: 73
 – Standard deviation: 13

• Check your UW email to access gradescope
• Solutions posted under “exams” on website
• Retrieve paper copies of your exam from CSE front desk until 3/1 (after which they will be recycled)

• Regrade policy:
 – Submit on gradescope by 2/22
 – Clearly state how you were misgraded
 – We will regrade the entire problem after deadline
Ask the staff…

- TA lectures not very effective
- Taping lectures
- Course grading

- Reminder: please sit in the back if you use your laptop to take notes
 - But please not sit in the last 3 rows

- Reminder: Keep comments coming via piazza / feedback link on website!
Meanwhile in data management…
Welcome to the 2nd half of 344

• Relational data model
 – Instance
 – Schema
 – Query languages
 • SQL, RA, RC, Datalog

• Query processing
 – Logical & physical plans
 – Indexes
 – Cost estimation
 – Query optimization

• Non-relational data model

• Conceptual design
 – E/R diagrams
 – Converting to SQL
 – Normalization

• Transactions
 – ACID
 – Transaction Implementation
 – Writing DB applications

• Parallel query processing
 – MapReduce
 – Spark
Database Design

What it is:
- Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it’s hard
- The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)
Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain

- Several formalisms exist
 - We discuss E/R diagrams
 - UML, model-driven architecture

- Reading: Sec. 4.1-4.6
Database Design Process

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical storage details
Physical Schema
Entity / Relationship Diagrams

- Entity set = a class
 - An entity = an object

- Attribute

- Relationship
Keys in E/R Diagrams

- Every entity set must have a key
What is a Relation?

• A mathematical definition:
 – if A, B are sets, then a relation R is a subset of A X B
• A={1,2,3}, B={a,b,c,d},
 A X B = {(1,a),(1,b), . . . , (3,d)}
 R = {(1,a), (1,c), (3,b)}

• makes is a subset of Product X Company:
Multiplicity of E/R Relations

- one-one:

- many-one

- many-many
What does this say?
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (How ?)

As a set of triples $\subseteq \text{Person} \times \text{Product} \times \text{Store}$
Q: What does the arrow mean?

A: A given person buys a given product from at most one store.

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]
Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product.
Converting Multi-way Relationships to Binary

Arrows go in which direction?
Converting Multi-way Relationships to Binary

Make sure you understand why!
3. Design Principles

What’s wrong?

Moral: Be faithful to the specifications of the application!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.
Design Principles: What’s Wrong?

Product

Purchase

Dates

Person

Store

date

Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation