
Introduction to Data Management
CSE 344

Lecture 15: NoSQL and JSon

CSE 344 - Winter 2017 1

Announcements

• Midterm on Monday
– Covers everything include this lecture

• Review session: Saturday 4-5pm
– Location TBD

• Today: NoSQL
CSE 344 - Winter 2017 2

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

CSE 344 - Winter 2017 3

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Winter 2017 4

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

P ⇒ Q same as
¬P∨ Q

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Winter 2017 5

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

P ⇒ Q same as
¬P∨ Q

Step 2: Make sure the query is domain independent
Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

From RC to Datalog¬ to SQL

Step 3: Create a datalog rule for each subexpression;
(shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

CSE 344 - Winter 2017 6

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE ……

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

7

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Winter 2017

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE … …)

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

8

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Winter 2017

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

9

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Winter 2017

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE L2.drinker=L.drinker and L2.beer=L.beer

and L2.beer=S.beer
and not exists (SELECT * FROM Frequents F

WHERE F.drinker=L2.drinker
and F.bar=S.bar))

From RC to Datalog¬ to SQL

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Serves S
WHERE L.beer=S.beer

and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L.drinker

and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

10

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Winter 2017

Datalog Summary: all these
formalisms are equivalent!

• We have seen these translations:
– RA à datalog¬
– RC à datalog¬

• Practice at home, and read Query Language
Primer:
– Nonrecursive datalog¬ à RA
– RA à RC

• Summary:
– RA, RC, and non-recursive datalog¬ can express the same

class of queries, called Relational Queries

CSE 344 - Winter 2017 11

End of Relational Data Model
(at least for now J)

CSE 344 - Winter 2017 12

Where are we?
• Relational data model

– Storage: file organization, indexes
– Languages: SQL / RA / RC / Datalog
– Query processing

• Non-relational data models (aka NoSQL)
– Unstructured
– Semi-structured

CSE 344 - Winter 2017 13

What’s Wrong with the
Relational Data Model?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for relational DMBS
– Do we copy entire relations to all servers? (expensive)
– Divide relations into pieces and distribute?

(break data model – how to execute queries?)

• NoSQL: reduce functionality for easier scale up
– Simpler data model
– Simpler query language

14

Non-Relational Data Models:

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2017 15

☞

Key-Value Data Model
• Instance: (key,value) pairs

– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Schema: none (!)
• Language:

– get(key), put(key,value)
– Operations on value are not supported

• How to scale up to multiple servers?
– No replication: key k is stored at server h(k)
– N-way replication: key k stored at h1(k),h2(k),…,hn(k)

How does get(k) work? How does put(k,v) work?
16

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? 17

Non-Relational Data Models

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2017 18

☞

Document Store Data Model

• Instance: (key,document) pairs
– Key = string/integer, unique for the entire data
– Document = JSon, or XML

• Schema: embedded in JSon / XML document
• Language:

– get(doc_key), put(doc_key,value)
– Limited, non-standard query language on Json (N1QL)

• How to scale up to multiple servers?
– Replicate entire documents, just like key/value pairs

We will discuss JSon in this class
19

Non-Relational Data Models

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2017 20

☞

Extensible Record Stores
• Based on Google’s BigTable
• Instance: Rows and columns, as in relational
• Schema: same as relational
• Language: Java/Python API for manipulating rows

– get(key), put(key,value)

• How to scale up to multiple servers?
– Splitting rows and columns over nodes
– Rows partitioned using primary key
– Columns of a table are distributed over multiple nodes by

using “column groups”

• HBase is an open source implementation of BigTable
21

