Introduction to Data Management
CSE 344

Lecture 13: Relational Calculus

CSE 344 - Winter 2017 1

Announcements

« WQ 4, HW 4 are out

« Midterm review session In class next
Thursday

e Section attendance:

— Checkingin for absentees etcis an academic dishonesty

— We hope we don’t need to but will pursue such students if
needed

CSE 344 - Winter 2017

Cost of Query Plans

CSE 344 - Winter 2017

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) TMsname

11

Selection and project on-the-fly
- No additional cost.

(On the fly)

Oscity="Seattle’and sstate="WA and pno=2

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)

(Nested loop) - =100+ 100 * 100
sid = sid =10,1001/0Os
SELECT sname
FROM Supplier x, Supply y
' WHERE x.sid = y.sid
Syppller Supply and y.pno = 2
(Flle scan) (Flle Scan) and x.scity = ‘Seattle’
CSE 344 - Winter 2017 and x.sstate = ‘WA’

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 2

liev
Supp _
vegat SwPP 4o Ty

<
I

11

WV
4. (On the fl MMsname Total/cost J
(y) =100+ 100 * 1/20 * 1/10
(step 1)
+100+ 100 * 1/2500

3. (Sort-merge join) [=<] (step 2) >)
+

sz lead §Mppl‘/ wkhtz Tz
(Ste@Vlﬁot T. '-TZ

Total cost = 204 1/0s

SELECT sname

Supplier FROM Supplier x, Supply y
WHERE x.sid = y.sid

(File scan) (File scan) and y.pno = 2

and x.scity = ‘Seattle’
and x.sstate = ‘WA’

CSE 344 - Winter 2017

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Phy3|cal Query Plan 3

11

(On the fly) 4. Tgpame Total cost
=1 (or2) (step 1.)
(On the fly) + 4 (step 2.)
3. Oggity= , A + 0 (step 3.)
scity="Seattle’and sstate="WA +0 (step4.)
‘ Total cost = 5 1/0s (or 6)
s.d sd (Index nested loop)
10000*1/2500 SELECT sname
(Use hash mdex = 4 tuples FROM Supplier x, Supply y
1. 06 WHERE x.sid = y.sid
pno =2 and y.pno = 2
and x.scity = ‘Seattle’
Supply Supplier and x.sstate = ‘WA’
(Index on pno) (Index on sid)

Assume: clustered Clustering does not matter 0

Query Optimizer Summary

* Input: A logical query plan
« Output: A good physical query plan

« Basic query optimization algorithm
— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
« Compute number of I/Os
« Optionally take into account other resources

— Choose plan with lowest cost
— This is called cost-based optimization

CSE 344 - Winter 2017 o/

Big Pictu

re

» Relational data model < Query processing

— Instance
— Schema
— Query language
« SQL
* Relational algebra

 Relational calculus
» Datalog

CSE 344 - Winter 2017

— Logical & physical
plans

— Indexes

— Cost estimation

— Query optimization

Why bother with another QL7

 SQL and RA are good for query planning
— They are not good for formal reasoning

— How do you show that two SQL queries are
equivalent / non-equivalent?

— Two RA plans?

« RC was the first language proposed with the
relational model (Codd)

 Influenced the design of datalog as we will
see

CSE 344 - Winter 2017

Relational Calculus

» Aka predicate calculus or first order logic
— 311 anyone?

« TRC = Tuple Relational Calculus
— See book

| DRC = Domain Relational Calculus
— We study only this one
— Also see Query Language Primer on course website

CSE 344 - Winter 2017 10

Relational Calculus

Query Q: gmeans: (X1, ..., X) IS inQifPisD

Q(X1,...,Xk)=P -

Relational predicate P is a formula given by this grammair:

P:=atom|PAP|PVP|P=>P|not(P)| Vx.P | Ix.P

Atomic predicate is either a relational or interpreted predicate:

atom :=R(X4, .., X)) | X=y [x>cC]|..

CSE 344 - Winter 2017

R(x,y) means (x,y)isin R

11

Actor(pid,fName,IName)
Casts(pid,mid)
Movie(mid,title,year

) n
Relational Calculus

Q(X1,...,Xk)=P -

Query Q: gmeans: (X1, ..., X) IS inQifPisD

Relational predicate P is a formula given by this grammair:

P:=atom|PAP|PVP|P=>P|not(P)| Vx.P | Ix.P

Atomic predicate is either a relational or interpreted predicate:

atom :=R(X4, .., X)) | X=y [x>cC]|..

R(x,y) means (x,y)isin R

Example: find the first/last names of actors who acted in 1940

What does this query return ?

Q(f,l)= Ix. Jy. Iz (Aq@r(z,f,l) /\?@@(Z,X)A\I\{@vie(x,yj940))

=

N
Q(f,l) = 3 z. (Actor(z,f,I) /(Y x.(Casté{z,x) = Jy.Mqyie(x,y,1940)))}

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Important Observation

Find all bars that serve all beers that Fred likes

A(x) = VYy. Likes("Fred", y) = Serves(x,y)

 Note: P = Q (read P implies Q) is the same as (not P) V Q

In this query: If Fred likes a beer the bar must serve it (P = Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

A(x) = Vy. not(Likes("Fred",y)) \VV Serves(x,y)

13

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer)
More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

CSE 344 - Winter 2017 14

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. Jz. Frequents(x, y)/\ Serves(y,z) /\ Likes(x,z)

CSE 344 - Winter 2017 15

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer)
More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

CSE 344 - Winter 2017 16

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)/\Likes(x,z))

CSE 344 - Winter 2017 17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))J

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

CSE 344 - Winter 2017 18

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))J

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)/\ Vz.(Serves(y,z) = Likes(x,z))

CSE 344 - Winter 2017 19

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))J

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)/\ Vz.(Serves(y,z) = Likes(x,z))

Paranoid Paul

Find drinkers that frequent only bars that serves only beer theyTiKe.

CSE 344 - Winter 2017 20

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = Jy. Iz. Frequents(x, y)/\ Serves(y,z)/\Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))J

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)/\ Vz.(Serves(y,z) = Likes(x,z))

Paranoid Paul

Find drinkers that frequent only bars that serves only beer theyTiKe.

Q(x) = Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

311 Review: Remember your

logical equivalences!

« A= B =not(A) V B

* not(A /A B) =not(A) V not(B)
* not(A \V B) = not(A) /\ not(B)
« VX.P(x) = not(3x. not(P(x)))

« Example:

— Vz. Serves(y,z) = Likes(x,z)
— Vz.not(Serves(y,z)) V Likes(x,z)
— not (dz. Serves(y,z) /\ not(Likes(x,z))

22
CSE 344 - Winter 2017

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

311 Review: Meaning of V

Find all bars that serve all beers that Fred likes

A(x) = Vy. Likes("Fred", y) = Serves(x,y)

« We want to find x’s such that the formula on the RHS is true

 Fora givenbar x, we need to check whether the implication
holds for all values of y
— Not enough to just check one value of y!

A(x)= VY. not(lees("Fred" y)) V. Serves(x,y) |

/v\o—‘(l,(” (\/) (\/‘)/\ ‘(;ral(
0 tr! [wes
L SOe A VoS

- Likewise, given a bar x, we need to iterate over all values of y
and check whether Serves(x,y)is true! 23

Likes(drinker, beer)
Frequents(drinker, bar)

senestoarseen)OMAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of

possible values

A1(x) = not Likes("Fred",

X)

Make sure x is a beer

A1(x) = dy Serves(y,x) Anot Likes("Fred", x)

CSE 344 - Winter 2017 24

Likes(drinker, beer)
Frequents(drinker, bar)

senestoarseen)OMAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
pOSSible ValueS Make sure x is a beer

A1(x) = not Likes("Fred", x) | A1(x)= Jy Serves(y,x) AnotLikes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y)

CSE 344 - Winter 2017 25

Likes(drinker, beer)
Frequents(drinker, bar)

senestoarseen)OMAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
pOSSible ValueS Make sure x is a beer

A1(x) = not Likes("Fred", x) | A1(x)= Jy Serves(y,x) AnotLikes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y)= Ju Serves(u,x) A Jw Serves(w,y)A[Likes("Fred",x)V Serves("Bar",y)

CSE 344 - Winter 2017 26

Likes(drinker, beer)
Frequents(drinker, bar)

senestoarseen)OMAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
pOSSible ValueS Make sure x is a beer

A1(x) = not Likes("Fred", x) | A1(x)= Jy Serves(y,x) AnotLikes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y)= Ju Serves(u,x) A Jw Serves(w,y)A[Likes("Fred",x)V Serves("Bar",y)

A3(x) = Vy. Serves(x,y)

CSE 344 - Winter 2017 27

Likes(drinker, beer)
Frequents(drinker, bar)

senestoarseen)OMAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on

the relations, but on the entire domain of
pOSSible Values Make sure x is a beer

A1(x) = not Likes("Fred", x) | A1(x)= Jy Serves(y,x) AnotLikes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y)= Ju Serves(u,x) N Jw Serves(w,y)A[Likes("Fred",x)V Serves("Bar",y)

A3(x) = Vy. Serves(x,y)

A3(x) =dJu.Serves(x,u)A Vy. dz.Serves(z,y) > Serves(x,y)

CSE 344 - Winter 2017 28

Domain of variables

* The active domain of a RC formula P
Includes all constants that occur in P:

—y >3, then AD(P) =
— pred(x,y) then AD(P) = none (pred = Bool. predicate)

— Vy. R(x,2,y) = S(x,y), then AD(P) =
(R, S are predicates)

 Active domain of a database instance
Includes all values that occurs in it

CSE 344 - Winter 2017 29

Domain independence

A RC formula P is domain independent if for
every database instance | and every domain

D such that AD(P) U AD(l) < D,
then Ii[)(JI) = Pw(l)(n

— Note: P has to be evaluated in at least
AD(P) U AD(])

* In other words, evaluating P on a larger

domain than AD(P) U AD(l) does not affect
the query results

— This is a desirable property!
CSE 344 - Winter 2017 30

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

IsBeer(beer) Doma|n |ndependence

IsBar(bar)
« Q(x) = VYy. Likes(x,y) is domain dependent

— Suppose Likes ={(d1,b1), (d1,b2)}
— What if we evaluate y over { b1, b2 }?
— What about { b1, b2, b3 }?

 Q(x) = dy. Likes(x,y) is domain independent
— What if we evaluate y over { b1, b2 }?
— What about { b1, b2, b3 1}?

« Q(x) =IsBar(x) A Vy. Serves(x,y) = IsBeer(y) is
domain independent

— LetlIsBeer={b1, b2}, IsBar={bar1}, and
Serves = { (bar1, b1), (bar1, b2) }

— What if we evaluate y over{ b1, b2}? { b1, b2, b3}?

31

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Domain Independence

A1(x) = not Likes("Fred", x)

Make sure x is a beer

A1(x) = Jdy Serves(y,x) AnotLikes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here

A2(x,y)= du Serves(u,x)A dw Serves(w,y)A[Likes("Fred",x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y)

A3(x) =Ju.Serves(x,u)A Vy.dz.Serves(z,y) 2> Serves(x,y)

Lesson: make sure your RC queries are domain independent

