Introduction to Data Management CSE 344

Lecture 13: Relational Calculus

Announcements

- WQ 4, HW 4 are out
- Midterm review session in class next Thursday
- Section attendance:
- Checking in for absentees etc is an academic dishonesty
- We hope we don't need to but will pursue such students if needed

Cost of Query Plans

Physical Query Plan 1

(On the fly)
$\Pi_{\text {sname }}$
Selection and project on-the-fly \rightarrow No additional cost.
(On the fly)
$\sigma_{\text {scity }}=$ 'Seattle'and sstate='WA' and pno=2

Total cost of plan is thus cost of join:
= B (Supplier) +B (Supplier) ${ }^{*} \mathrm{~B}$ (Supply)
$=100+100$ * 100
$=10,100 \mathrm{I} / \mathrm{Os}$
(Nested loop)

Supply
(File scan)
CSE 344 - Winter 2017

Physical Query Plan 2

4. (On the fly) $\quad \Pi_{\text {sname }}$
5. (Sort-merge join) $\underset{\text { sid }=\text { sid }}{\underset{\text { sid }}{ }}$
(Scan
write to T1)
6. $\sigma_{\text {scity }}=$ 'Seattle' and sstate='WA'

Supplier
(File scan)
(Scan
write to T2)

Supply
(File scan)
read supplier write T_{1}
Total/cost
$=100+100 * 1 / 20 * 1 / 10$
(step 1)
$+100+100 * 1 / 2500$ (step 2) $\underset{\text { read Supply }}{\text { write }} T_{2}$ $+2 \xrightarrow{2}$ read Supply write T_{2} (step 3) $\mathrm{rread}_{1}, T_{2}$
$+0$
(step 4)
Total cost ≈ 204 I/Os

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```


Physical Query Plan 3

(On the fly) 4. $\quad \Pi_{\text {sname }}$
 (On the fly)
 3. $\sigma_{\text {scity }}=$ 'Seattle' and sstate='WA'

Total cost

$$
\begin{aligned}
& =1(\text { or } 2)(\text { step } 1 .) \\
& +4(\text { step } 2 .) \\
& +0(\text { step } 3 .) \\
& +0(\text { step } 4 .)
\end{aligned}
$$

Total cost ≈ 5 I/Os (or 6)
2. sid = sid (Index nested loop)
(Use hash index) $\begin{aligned} & 10000 \times 1 / 2500 \\ & =4 \text { tuples }\end{aligned}$

1. $\sigma_{\mathrm{pno}}=2$

Supply
Assume: clustered

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```

Clustering does not matter

Query Optimizer Summary

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
- Enumerate alternative plans (logical and physical)
- Compute estimated cost of each plan
- Compute number of I/Os
- Optionally take into account other resources
- Choose plan with lowest cost
- This is called cost-based optimization

Big Picture

- Relational data model • Query processing
- Instance
- Schema
- Query language
- SQL
- Relational algebra
- Relational calculus
- Datalog
- Logical \& physical plans
- Indexes
- Cost estimation
- Query optimization

Why bother with another QL?

- SQL and RA are good for query planning
- They are not good for formal reasoning
- How do you show that two SQL queries are equivalent / non-equivalent?
- Two RA plans?
- RC was the first language proposed with the relational model (Codd)
- Influenced the design of datalog as we will see

Relational Calculus

- Aka predicate calculus or first order logic
- 311 anyone?
- TRC = Tuple Relational Calculus
- See book
- DRC = Domain Relational Calculus
- We study only this one
- Also see Query Language Primer on course website

Relational Calculus

Query Q:

This means: $\left(x_{1}, \ldots, x_{k}\right)$ is in Q if P is true

$$
Q\left(x_{1}, \ldots, x_{k}\right)=P
$$

Relational predicate P is a formula given by this grammar:

$$
P::=\operatorname{atom}|P \wedge P| P \vee P|P \Rightarrow P| \operatorname{not}(P)|\forall x \cdot P| \exists x . P
$$

Atomic predicate is either a relational or interpreted predicate:

$$
\text { atom }::=R\left(x_{1}, \ldots, x_{k}\right)|x=y| x>c \mid \ldots \quad R(x, y) \text { means }(x, y) \text { is in } R
$$

Relational Calculus

Query Q:

This means: $\left(x_{1}, \ldots, x_{k}\right)$ is in Q if P is true

$$
Q\left(x_{1}, \ldots, x_{k}\right)=P
$$

Relational predicate P is a formula given by this grammar:

$$
\mathrm{P}::=\operatorname{atom}|\mathrm{P} \wedge \mathrm{P}| \mathrm{P} \vee \mathrm{P}|\mathrm{P} \Rightarrow \mathrm{P}| \operatorname{not}(\mathrm{P})|\forall \mathrm{x} . \mathrm{P}| \exists \mathrm{x} . \mathrm{P}
$$

Atomic predicate is either a relational or interpreted predicate:

$$
\text { atom ::= } R\left(x_{1}, \ldots, x_{k}\right)|x=y| x>c \mid \ldots \quad R(x, y) \text { means }(x, y) \text { is in } R
$$

Example: find the first/last names of actors who acted in 1940

What does this query return?

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

In@ortant observetion

Find all bars that serve all beers that Fred likes

$$
\mathrm{A}(\mathrm{x})=\forall \mathrm{y} \text {. Likes("Fred", } \mathrm{y}) \Rightarrow \text { Serves }(\mathrm{x}, \mathrm{y})
$$

- Note: $P \Rightarrow Q($ read P implies Q) is the same as (not $P) \vee Q$

In this query: If Fred likes a beer the bar must serve it ($P \Rightarrow Q$) In other words: Either Fred does not like the beer (not P) OR the bar serves that beer (Q).

$$
A(x)=\forall y \cdot n o t(\text { Likes }(\text { "Fred", } \mathrm{y})) \vee \text { Serves }(\mathrm{x}, \mathrm{y})
$$

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\forall \mathrm{y} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \Rightarrow(\exists \mathrm{z} \text {. Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

$$
Q(x)=\forall y . \text { Frequents }(x, y) \Rightarrow(\exists z . \text { Serves }(y, z) \wedge \underset{\text { Likes }(x, z))}{\text { Cautious Carl }}
$$

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

$$
Q(x)=\forall y . \text { Frequents }(x, y) \Rightarrow(\exists z . \operatorname{Serves}(y, z) \wedge \underset{\text { Cautious Carl }}{\wedge \operatorname{Likes}(x, z))}
$$

Find drinkers that frequent some bar that serves only beers they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} \text {. Frequents }(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{z} \text {.(Serves }(\mathrm{y}, \mathrm{z}) \Rightarrow \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\forall \mathrm{y} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \Rightarrow(\exists \mathrm{z} . \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

Find drinkers that frequent some bar that serves only beers they like.

$$
Q(x)=\exists y . \text { Frequents }(x, y) \wedge \forall z .(\text { Serves }(y, z) \Rightarrow \text { Likes }(x, z))
$$

Paranoid Paul
Find drinkers that frequent only bars that serves only beer they tike.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \exists \mathrm{z} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \text { Serves }(\mathrm{y}, \mathrm{z}) \wedge \text { Likes }(\mathrm{x}, \mathrm{z})
$$

Prudent Peter
Find drinkers that frequent only bars that serves some beer they like.

$$
Q(x)=\forall y . \text { Frequents }(x, y) \Rightarrow(\exists z . \text { Serves }(y, z) \wedge \underset{\text { Cikes }(x, z))}{\wedge(i)}
$$

Find drinkers that frequent some bar that serves only beers they like.

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{z} \text {.(Serves }(\mathrm{y}, \mathrm{z}) \Rightarrow \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

Paranoid Paul
Find drinkers that frequent only bars that serves only beer they Inke.

$$
\mathrm{Q}(\mathrm{x})=\forall \mathrm{y} . \text { Frequents }(\mathrm{x}, \mathrm{y}) \Rightarrow \forall \mathrm{z} .(\text { Serves }(\mathrm{y}, \mathrm{z}) \Rightarrow \text { Likes }(\mathrm{x}, \mathrm{z}))
$$

311 Review: Remember your logical equivalences!

- $A \Rightarrow B=\operatorname{not}(A) \vee B$
- $\operatorname{not}(A \wedge B)=\operatorname{not}(A) \vee \operatorname{not}(B)$
- $\operatorname{not}(A \vee B)=\operatorname{not}(A) \wedge \operatorname{not}(B)$
- $\forall x \cdot P(x)=\operatorname{not}(\exists x \cdot \operatorname{not}(P(x)))$
- Example:
$-\forall z$. Serves $(y, z) \Rightarrow$ Likes (x, z)
$-\forall z . \operatorname{not}(S e r v e s(y, z)) \vee \operatorname{Likes}(x, z)$
$-\operatorname{not}(\exists z . \operatorname{Serves}(y, z) \wedge \operatorname{not}(L i k e s(x, z))$

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

311 Review: Meaning of

Find all bars that serve all beers that Fred likes

$$
\mathrm{A}(\mathrm{x})=\forall \mathrm{y} \text {. Likes("Fred", } \mathrm{y}) \Rightarrow \text { Serves }(\mathrm{x}, \mathrm{y})
$$

- We want to find x's such that the formula on the RHS is true
- For a given bar x, we need to check whether the implication holds for all values of \boldsymbol{y}
- Not enough to just check one value of y !

$$
\begin{aligned}
& A(x)=\forall y . \operatorname{not}(\text { Likes("Fred", y)) } \vee \text { Serves(x,y) } \\
& =\operatorname{not}\left(\left({ }^{\prime \prime} F^{\prime}, y_{1}\right) \vee S\left(x, y_{1}\right) \wedge\right. \\
& \operatorname{not}\left(L\left(" F^{\prime \prime}, y_{2}\right) \vee S\left(x, y_{2}\right) \wedge \ldots\right.
\end{aligned} \begin{aligned}
& \text { for all } \\
& \text { values } \\
& \text { of } y
\end{aligned}
$$

- Likewise, given a bar x, we need to iterate over all values of \mathbf{y} and check whether Serves (x, y) is true!
- An unsafe RC query, aka domain dependent, returns an answer that does not depend just on the relations, but on the entire domain of possible values
A1 (x) $=$ not Likes("Fred", $x) \quad$ A1 $(x)=\exists y \operatorname{Serves(y,x)~} \wedge$ not Likes("Fred", x)
- An unsafe RC query, aka domain dependent, returns an answer that does not depend just on the relations, but on the entire domain of possible values
$\mathrm{A} 1(\mathrm{x})=$ not Likes("Fred", x$) \quad \mathrm{A} 1(\mathrm{x})=\exists \mathrm{y}$ Serves($\mathrm{y}, \mathrm{x}) \wedge$ not Likes("Fred", x)
A2(x,y) = Likes("Fred", x) V Serves("Bar", y)

Likes(drinker, beer)
Frequents(drinker, bar)
senest(bar.beer) Domain Independent Relational Calculus

- An unsafe RC query, aka domain dependent, returns an answer that does not depend just on the relations, but on the entire domain of possible values
$\mathrm{A} 1(\mathrm{x})=$ not Likes("Fred", x$) \quad \mathrm{A} 1(\mathrm{x})=\exists \mathrm{y}$ Serves($\mathrm{y}, \mathrm{x}) \wedge$ not Likes("Fred", x)
A2(x,y) = Likes("Fred", x) V Serves("Bar", y)
A2 $(x, y)=\exists u \operatorname{Serves}(u, x) \wedge \exists w \operatorname{Serves}(w, y) \wedge[$ Likes("Fred", $x) \vee$ Serves("Bar", y)
- An unsafe RC query, aka domain dependent, returns an answer that does not depend just on the relations, but on the entire domain of possible values
A1 (x) $=$ not Likes("Fred", $x) \quad A 1(x)=\exists y \operatorname{Serves(y,x)\wedge \text {notLikes("Fred",}x)~}$
A2(x,y) = Likes("Fred", x) V Serves("Bar", y)
A2 $(x, y)=\exists u \operatorname{Serves}(u, x) \wedge \exists w \operatorname{Serves}(w, y) \wedge[$ Likes("Fred", $x) \vee$ Serves("Bar", y)
A3(x) $=\forall$ y. Serves (x, y)

Likes(drinker, beer)
Frequents(drinker, bar)
senestbar.beer) Domain Independent Relational Calculus

- An unsafe RC query, aka domain dependent, returns an answer that does not depend just on the relations, but on the entire domain of possible values
$\mathrm{A} 1(\mathrm{x})=\operatorname{not}$ Likes("Fred", x$) \quad \mathrm{A} 1(\mathrm{x})=\exists \mathrm{y}$ Serves($\mathrm{y}, \mathrm{x}) \wedge$ not Likes("Fred", x)
A2(x,y) = Likes("Fred", x) V Serves("Bar", y)
A2 $(x, y)=\exists u \operatorname{Serves}(u, x) \wedge \exists w \operatorname{Serves}(w, y) \wedge[$ Likes("Fred", $x) \vee$ Serves("Bar", y)

$$
\text { A3(x) }=\forall y \text {. Serves }(x, y)
$$

$$
A 3(x)=\exists u . \operatorname{Serves}(x, u) \wedge \forall y . \exists z . S e r v e s(z, y) \rightarrow \text { Serves }(x, y)
$$

Domain of variables

- The active domain of a RC formula P includes all constants that occur in P :
$-y>3$, then $\operatorname{AD}(P)=3$
$-\operatorname{pred}(x, y)$ then $A D(P)=$ none (pred = Bool. predicate)
$-\forall y . R(x, 2, y) \Rightarrow S(x, y)$, then $A D(P)=2$
(R, S are predicates)
- Active domain of a database instance includes all values that occurs in it

Domain independence

- A RC formula P is domain independent if for every database instance I and every domain D such that $A D(P) \cup A D(I) \subseteq D$, then $P_{D}(I)=P_{A D(P) \cup A D(I)}(I)$
- Note: P has to be evaluated in at least $A D(P) \cup A D(I)$
- In other words, evaluating P on a larger domain than $A D(P) \cup A D(I)$ does not affect the query results
- This is a desirable property!

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)
$\substack{\text { sseerlbeer) } \\ \text { IsBarlbari }}$ Domain independence

- $\mathrm{Q}(\mathrm{x})=\forall \mathrm{y}$. Likes (x, y) is domain dependent
- Suppose Likes $=\{(\mathrm{d} 1, \mathrm{~b} 1),(\mathrm{d} 1, \mathrm{~b} 2)\}$
- What if we evaluate y over $\{b 1, b 2\} ?$
- What about $\{\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3\}$?
- $\mathrm{Q}(\mathrm{x})=\exists \mathrm{y}$. Likes (x, y) is domain independent
- What if we evaluate y over $\{\mathrm{b} 1, \mathrm{~b} 2\}$?
- What about \{b1, b2, b3 \}?
- $Q(x)=\operatorname{IsBar}(x) \wedge \forall y$. Serves $(x, y) \Rightarrow \operatorname{IsBeer}(y)$ is domain independent
- Let IsBeer = \{b1, b2 \}, IsBar = \{bar1 \}, and Serves = \{ (bar1, b1), (bar1, b2) \}
- What if we evaluate y over $\{\mathrm{b} 1, \mathrm{~b} 2\}$? $\{\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3\}$?

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Domain Independence

Make sure x is a beer

$$
\text { A1 }(x)=\text { not Likes("Fred", } x) \quad A 1(x)=\exists y \text { Serves(} y, x) \wedge \text { not Likes("Fred", } x)
$$

```
A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
    A2(x,y)= \existsu Serves(u,x)^ \exists冞Serves(w,y)^[Likes("Fred",x)VServes("Bar", y)]
```

A3(x) $=\forall \mathrm{y}$. Serves (x, y)
A3(x) $=\exists$ u.Serves $(x, u) \wedge \forall y . \exists z . \operatorname{Serves}(z, y) \rightarrow \operatorname{Serves}(x, y)$

Lesson: make sure your RC queries are domain independent

