Introduction to Data Management CSE 344

Lecture 12: Cost Estimation Relational Calculus

Announcements

- HW3 due tonight
- WQ4 and HW4 out
- Due on Thursday 2/9

Midterm!

- Monday, February $13^{\text {th }}$ in class
- Contents
- Lectures and sections through February 8th
- Homework 1 through 4
- Webquiz 1 through 4
- Closed book. No computers, phones, watches, etc.!
- Can bring one letter-sized piece of paper with notes
- Can write on both sides
- You might want to save it for the final

Today's Outline

- Finish cost estimation
- Relational calculus

Review

- Estimate cost of physical query plans
- Based on \# of I/O operations
- Estimate cost for each operator
- Cost of entire plan = Σ operator cost
- Cost for selection operator
- Cost for join operator

Review: Cost Parameters

- Cost $=1 / O+$ CPU + Network BW
- We will focus on I/O in this class
- Parameters:
$-B(R)=\#$ of blocks (i.e., pages) for relation R
$-T(R)=\#$ of tuples in relation R
$-V(R, a)=\#$ of distinct values of attribute a
- When a is a key, $V(R, a)=T(R)$
- When a is not a key, $V(R, a)$ can be anything $<=T(R)$
- Where do these values come from?
- DBMS collects statistics about data on disk

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100,000 \\ V(R, a)=20\end{array}$ |
| :--- |

$$
\text { cost of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan:
- Index based selection:

Index Based Selection

- Example: | $B(R)=2000$ |
| :--- |
| $T(R)=100,000$ |
| $V(R, a)=20$ |

$$
\text { cost of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & \mathrm{~T}(\mathrm{R})=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$

$$
\text { cost of } \sigma_{a=v}(\mathrm{R})=\text { ? }
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered:
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & T(R)=100,000 \\ & \mathrm{~V}(R, a)=20\end{aligned}$

$$
\text { cost of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R)$ * $1 / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered:

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100,000 \\ V(R, a)=20\end{array}$ |
| :--- |

$$
\text { cost of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R)^{*} 1 / V(R, a)=1001 / O s$
- If index is unclustered: $T(R) * 1 / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100,000 \\ V(R, a)=20\end{array}$ |
| :--- |

$$
\text { cost of } \sigma_{a=v}(\mathrm{R})=\text { ? }
$$

- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R)$ * $1 / V(R, a)=1001 / O s$
- If index is unclustered: $T(R) * 1 / V(R, a)=5,000 I / O s$

Lesson: Don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Cost of Executing Operators (Focus on Joins)

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Note about readings:
- In class, we discuss only algorithms for joins
- Other operators are easier: read the book

Join Algorithms

- Nested loop join
- Hash join
- Sort-merge join

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
- R is the outer relation, S is the inner relation

```
for each tuple t in in R do
    for each tuple t}\mp@subsup{t}{2}{}\mathrm{ in S do
    if }\mp@subsup{t}{1}{}\mathrm{ and }\mp@subsup{t}{2}{}\mathrm{ join then output ( }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}
```

What is the Cost?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
- R is the outer relation, S is the inner relation

- Multiple-pass since S is read many times

Page-at-a-time Refinement

for each page of tuples r in R do for each page of tuples s in S do
for all pairs of tuples t_{1} in r, t_{2} in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

- Cost: $B(R)+B(R) B(S)$

What is the Cost?

Hash Join

Hash join: $R \bowtie S$

- Scan R, build buckets in main memory
- Then scan S and join
- Cost: $B(R)+B(S)$
- Which relation to build the hash table on?
- One-pass algorithm when $B(R) \leq M$
$-\mathrm{M}=$ number of memory pages available

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)
Patient \bowtie Insurance
Two tuples per page

Patient

1	'Bob'	'Seattle'
2	'Ela'	'Everett'

3	'Jill'	'Kent'
4	'Joe'	'Seattle'

Insurance

2	'Blue'	123
4	'Prem'	432

4	'Prem'	343
3	'GrpH'	554

Hash Join Example

Patient \bowtie Insurance

Some largeenough \#

Memory M = 21 pages

Hash Join Example

Step 1: Scan Patient and build hash table in memory Can be done in method open()

Memory M = 21 pages

Hash Join Example

Step 2: Scan Insurance and probe into hash table Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4

Disk
Patient Insurance

1	2
3	4
9	6
8	5

2	4	6	6
4	3	1	3
2	1	3	
2	8		
8	9		

Hash Join Example

Step 2: Scan Insurance and probe into hash table Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4

Disk
Patient Insurance

2	4	6	6
4	3	1	3
2	1	3	
2	8		
8	9		

\section*{| 2 | 4 |
| :--- | :--- |}

Input buffer

$$
\begin{array}{|l|l}
\hline 4 & 4 \\
\hline
\end{array}
$$

Output buffer

Hash Join Example

Step 2: Scan Insurance and probe into hash table Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4	9

Disk
Patient Insurance

1	2
3	4
9	6
8	5

2	4	6	6
4	3	1	3
2	8		
8	9		

Sort-Merge Join

Sort-merge join: $R \bowtie S$

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: $B(R)+B(S)$
- One pass algorithm when $B(S)+B(R)<=M$
- Typically, this is NOT a one pass algorithm

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

Disk
Patient Insurance

Disk					
Patient			Insurance		
1	2	2	2	4	6

1	2	3	4	5	6	8	9

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

1	2	3	4	5	6	8	9

1	2	2	3	3	4	4	6
6	8	8	9				

Patient Insurance

1	2		2 4 6 6 3 4 4 4 3 1	3	
9	6		2	8	
	2	5			
	8	9			

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Cost of Query Plans

Physical Query Plan 1

(On the fly)
$\Pi_{\text {sname }}$
(On the fly)
$\sigma_{\text {scity }}=$ 'Seattle' and sstate='WA' and pno=2
(Nested loop)

Supply
(File scan)
CSE 344 - Winter 2017

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
$=100+100$ * 100
$=10,100 \mathrm{I} / \mathrm{Os}$

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```


Physical Query Plan 2

4. (On the fly) $\quad \Pi_{\text {sname }}$
5. (Sort-merge join) $\underset{\text { sid }=\text { sid }}{\underset{\text { sid }}{ }}$
(Scan
write to T1)
YScan
6. $\sigma_{\text {scity }}=$ 'Seattle' and sstate $=$ 'WA'

Supplier
(File scan)
2. $\sigma_{\mathrm{pno}}=2$
$\left.\right|_{\text {Supply }} ^{\mid}$
(File scan)

CSE 344 - Winter 2017

Total cost W > 1
$=100+100 * 1 / 20 * 1 / 10$
(step 1)
$+100+100 * 1 / 2500 \rightarrow 1$
(step 2)

+ 2
(step 3)
$+0$
(step 4)
Total cost ≈ 204 I/Os

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
    and y.pno = 2
    and x.scity = 'Seattle'
    and x.sstate = 'WA'
```

