Introduction to Database Systems CSE 344

Lecture 11: Basics of Query Optimization and Query Cost Estimation

Announcements

- HW3 due Wed evening
- HW4 will be out on Wed
- Extra OHs (today and) tomorrow

Review

- What is a disk block? (aka page)
- What is an index?
 - What data structures are used to represent indexes in memory?
- What are clustered/unclustered indexes?

Student

Which Indexes?

ID	fName	IName
10	Tom	Hanks
20	Amy	Hanks

- The index selection problem
 - Given a table, and a "workload" (big Java application with lots of SQL queries), decide which indexes to create (and which ones NOT to create!)
- Who does index selection:
 - The database administrator DBA
 - Semi-automatically, using a database administration tool

Student

Which Indexes?

ID	fName	IName
10	Tom	Hanks
20	Amy	Hanks

- The index selection problem
 - Given a table, and a "workload" (big Java application with lots of SQL queries), decide which indexes to create (and which ones NOT to create!)
- Who does index selection:
 - The database administrator DBA

 Semi-automatically, using a database administration tool

Your workload is this

100000 queries:

100 queries:

Your workload is this

100000 queries:

100 queries:

What indexes ?

Your workload is this

100000 queries:

100 queries:

A: V(N) and V(P) (hash tables or B-trees)

What indexes ?

Your workload is this

100000 queries:

100 queries:

SELECT * FROM V WHERE N>? and N<? SELECT * FROM V WHERE P=? 100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

Your workload is this

100000 queries: 1000000 queries:

100000 queries:

SELECT * FROM V WHERE N=? and P>?

What indexes ?

Your workload is this

100000 queries: 1000000 queries:

100000 queries:

SELECT * FROM V WHERE N=? and P>?

How does this index differ from: 1. Two indexes V(N) and V(P)? CSE 344 2. An index V(P, N)?

V(M, N, P);

Your workload is this

1000 queries:

SELECT * FROM V WHERE N>? and N<? 100000 queries:

```
SELECT *
FROM V
WHERE P>? and P<?
```

What indexes ?

Your workload is this

1000 queries:

SELECT * FROM V WHERE N>? and N<? 100000 queries:

```
SELECT *
FROM V
WHERE P>? and P<?
```

A: V(N) secondary, V(P) primary index

Two typical kinds of queries

SELECT * FROM Movie WHERE year = ? • Point queries

• What data structure should be used for index?

SELECT * FROM Movie WHERE year >= ? AND year <= ?

- Range queries
- What data structure should be used for index?

Basic Index Selection Guidelines

- Consider queries in workload in order of importance
- Consider relations accessed by query
 - No point indexing other relations
- Look at WHERE clause for possible search key
- Consider how each query will be processed
 Which predicate will be processed first?
- Try to choose indexes that speed-up multiple queries CSE 344 - Winter 2017 16

Choosing Index is Not Enough

- To estimate the cost of a query plan, we still need to consider other factors:
 - How each operator is implemented
 - The cost of each operator
 - Let's start with the basics

Query Execution

Iterator Interface for Query Operators

- open()
 - Initializes operator state
 - Sets parameters such as selection condition
- next()
 - Operator invokes get_next() recursively on its inputs
 - Performs processing and produces an output tuple
- close(): clean-up state
- (more in 444)

Cost of Reading Data From Disk

Cost Parameters

- Cost = I/O + CPU + Network BW
 - We will focus on I/O in this class
- Parameters:
 - B(R) = # of blocks (i.e., pages) for relation R
 - T(R) = # of tuples in relation R
 - V(R, a) = # of distinct values of attribute a
 - When a is a key, V(R,a) = T(R)
 - When a is not a key, V(R,a) can be anything <= T(R)
- Where do these values come from?
 - DBMS collects statistics about data on disk

Selectivity Factors for Conditions

• A = c /* $\sigma_{A=c}(R)$ */

- Selectivity = 1/V(R,A)

- A < c /* $\sigma_{A < c}(R)$ */ – Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))
- c1 < A < c2 /* $\sigma_{c1 < A < c2}(R)$ */ - Selectivity = (c2 - c1)/(max(R,A) - min(R,A))

Cost of Reading Data From Disk

- Sequential scan for relation R costs B(R)
- Index-based selection
 - Estimate selectivity factor X (see previous slide)
 - Clustered index: X*B(R)
 - Unclustered index X*T(R)

Note: we ignore I/O cost for index pages