
Introduction to Database Systems
CSE 344

Lecture 10:
Basics of Data Storage and Indexes

CSE 344 - Winter 2017 1

Reminder

• HW3 is due next Wednesday

CSE 344 - Winter 2017 2

Review

• Logical plans

• Physical plans

• Overview of query optimization and execution

CSE 344 - Winter 2017 3

4

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Review: Relational Algebra

CSE 344 - Winter 2017

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

5

Review: Physical Query Plan Example

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 344 - Winter 2017

A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Query Optimization Problem

• For each SQL query… many logical plans

• For each logical plan… many physical plans

• How do find a fast physical plan?
– Will discuss in a few lectures
– First we need to understand how data is stored on

the disk, and how other data structures can be used
to optimize query execution

CSE 344 - Winter 2017 6

Query Performance
• My database application is too slow… why?
• One of the queries is very slow… why?

• To understand performance, we need to
understand:
– How is data organized on disk
– How to estimate query costs

– In this course we will focus on disk-based DBMSs

CSE 344 - Winter 2017 7

Data Storage

• DBMSs store data in files
• Most common organization is row-wise storage
• On disk, a file is split into

blocks
• Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each
CSE 344 - Winter 2017 8

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

9

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - Winter 2017

Data File Types

The data file can be one of:
• Heap file

– Unsorted
• Sequential file

– Sorted according to some attribute(s) called key

10

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - Winter 2017

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on
our database.

Index

• An additional file, that allows fast access to
records in the data file given a search key

11CSE 344 - Winter 2017

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

12CSE 344 - Winter 2017

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)
– The value = a pointer to the record

• Could have many indexes for one table

13

Key = means here search key

CSE 344 - Winter 2017

This Is Not A Key

Different keys:
• Primary key – uniquely identifies a tuple
• Key of the sequential file – how the data file is

sorted, if at all
• Index key – how the index is organized

CSE 344 - Winter 2017 14

15

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 344 - Winter 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

950

…

Index Student_ID on Student.ID

16

Example 2:
Index on fName

CSE 344 - Winter 2017

Index Student_fName
on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Data File Student

Index Organization
We need a way to represent indexes after
loading into memory
Several ways to do this:
• Hash table
• B+ trees – most popular

– They are search trees, but they are not binary
instead have higher fanout

– Will discuss them briefly next
• Specialized indexes: bit maps, R-trees,

inverted index
CSE 344 - Winter 2017 17

18

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSE 344 - Winter 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks
20 Amy Hanks

50 … …
200 …

220
240

420
800

Index Student_ID on Student.ID

Index File
(in memory)

Data file
(on disk)

19

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 344 - Winter 2017

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records
CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

20CSE 344 - Winter 2017

Every table can have only one clustered and many unclustered indexes
Why?

21

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

CSE 344 - Winter 2017

22

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

CSE 344 - Winter 2017

23

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data
• Primary/secondary

– Meaning 1:
• Primary = is over attributes that include the primary key
• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered
• Organization B+ tree or Hash table

CSE 344 - Winter 2017

Scanning a Data File
• Disks are mechanical devices!

– Technology from the 60s; density much higher now

• Read only at the rotation speed!
• Consequence:

Sequential scan is MUCH FASTER than random reads
– Good: read blocks 1,2,3,4,5,…
– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

• Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, not enough room for everything (NO LONGER TRUE) 24

Example

CSE 344 - Winter 2017 25

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Example

CSE 344 - Winter 2017 26

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Example

CSE 344 - Winter 2017 27

SELECT	*
FROM		Student	x,	Takes	y
WHERE	x.ID=y.studentID	AND	y.courseID	>	300

for	y	in	index_Takes_courseID	where y.courseID	>	300
for x	in Student	where	x.ID	=	y.studentID

output	*

Assume the database has indexes on these attributes:
• index_takes_courseID = index on Takes.courseID
• index_student_ID = index on Student.ID

for	y	in Takes
if courseID	>	300	then
for x	in Student

if x.ID=y.studentID
output	*

Index	selection

Index	join

Getting Practical:
Creating Indexes in SQL

28

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	 INDEX	V5	ON V(N)

CSE 344 - Winter 2017

CREATE UNIQUE	INDEX V4	ON V(N)

Getting Practical:
Creating Indexes in SQL

29

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	 INDEX	V5	ON V(N)

CSE 344 - Winter 2017

CREATE UNIQUE	INDEX V4	ON V(N)

What	does	this	mean?

Getting Practical:
Creating Indexes in SQL

30

CREATE		INDEX	V1	ON	V(N)

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);

CREATE		INDEX	V2	ON	V(P,	M)

CREATE		INDEX	V3	ON	V(M,	N)

CREATE	CLUSTERED	 INDEX	V5	ON V(N)

CSE 344 - Winter 2017

CREATE UNIQUE	INDEX V4	ON V(N)
Not	supported

in	SQLite

What	does	this	mean?

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - Winter 2017 31

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

In general this is a very hard problem

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

32CSE 344 - Winter 2017

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

33CSE 344 - Winter 2017

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Which Indexes?

• The index selection problem
– Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– The database administrator DBA

– Semi-automatically, using a database
administration tool

34CSE 344 - Winter 2017

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Selection: Which Search Key

• Make some attribute K a search key if the
WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

35CSE 344 - Winter 2017

