Introduction to Data Management
CSE 344

Lecture 1: Introduction

Couldn’t register?
Signup on overload list http://tinyurl.com/hz9sxzd
Ask me for the code word after class

Webquiz token (write this down):
37FE0390
Class Goals

• The world is drowning in data!
• Need computer scientists to help manage this data
 – Help domain scientists achieve new discoveries
 – Help companies provide better services (e.g. Facebook)
 – Help governments become more efficient
• Welcome to 344: Introduction to Data Management
 – Existing tools PLUS data management principles
 – This is not just a class on SQL!
Turing Awards in Data Management

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Jim Gray, 1998
Transaction processing

Michael Stonebraker, 2014
INGRES and Postgres

You could be next!!
Staff

• Instructor: Alvin Cheung
 – Office hour on Thursdays, 11am-noon in CSE 530

From ACM Spring BBQ 15
Staff

• **TAs:**
 - Nicholas Anderson
 - Shumo Chu
 - Kelly Jiang
 - Clara Lu
 - Jonathan Phippen
 - Amarpal Singh
 - Cindy Suripto
 - Lisa Zhang

• See course website for office hours and locations

• **Contacting staff:**
 - Please use piazza and anonymous feedback link on course website
 - All course announcements will be posted on piazza, make sure you sign up
Course Format

• Lectures MWTh, 3:30-4:20 pm
 – Location: here!

• Sections: Thursdays
 – Content: exercises, tutorials, questions
 – Locations: see web
 – We will take attendance

• 7 homework assignments
• 6 web quizzes

• Midterm and final

• Class and section participation
 – Post and answer questions (in class, piazza, etc)
 – In-class exercises (hint: come to class!)
Grading

• Homeworks 30%
• Web quizzes 10%
• Midterm 20%
• Final 30%
• Class participation 10%

• This is all subject to change
Communications

• **Web page:** http://www.cs.washington.edu/344
 - Syllabus is there
 - Lectures will be available there (see calendar)
 - Homework assignments will be available there
 - Link to web quizzes is there

• **Piazza**
 - Make sure you sign up:
 - **THE** place to ask course-related questions
 - Log in today and enable notifications
Textbook

Main textbook, available at the bookstore:

Second edition.

Textbook (and others) are REQUIRED READING!

Most important: COME TO CLASS! ASK QUESTIONS!
Other Texts

Available at the Engineering Library
(some on reserve):

• *Database Management Systems*, Ramakrishnan
• *Fundamentals of Database Systems*, Elmasri, Navathe
• *Foundations of Databases*, Abiteboul, Hull, Vianu
• *Data on the Web*, Abiteboul, Buneman, Suciu
Seven Homework Assignments

H1&H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Relational algebra, Datalog
H5: NoSQL
H6: Conceptual Design
H7: SQL in Java (JDBC)

Check calendar for due dates -- Submit via dropbox!
About the Assignments

• Homework assignments will take time but most time should be spent *learning*

• Do them on your own

• Very practical assignments

• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, SQL Azure JDBC, JSON, Hadoop,…
Deadlines and Late Days

• Assignments are expected to be done on time, but things happen, so…
• You have up to 4 late days
 – No more than 2 on any one assignment
 – Use in 24-hour chunks
• Late days = safety net, not convenience!
 – You should not plan on using them
 – If you use all 4 you are doing it wrong
Six Web Quizzes

- http://newgradiance.com/
- Create account, provide token
- **Class token: 37FE0390** (will post on piazza)
- Short tests, take many times, best score counts
- **No late days** – closes at 11:00 deadline
- Provide explanations for wrong answers
- Will help you
 - Test your knowledge
 - Stay in synch with class
 - Get ready for homework assignments
Exams

• Midterm and Final
 – See course calendar for dates and times

• Can bring letter-size piece of paper with notes
 – Can write on both sides
 – Midterm: 1 sheet, Final: 2 sheets

• Closed book. No computers, phones, watches, etc.!

• Check course website for dates

• Location: in class
Academic Integrity

• Anything you submit for credit is expected to be your own work
 – Of course OK to exchange ideas, but not detailed solutions
 – We all know difference between collaboration and cheating
 – Attempt to gain credit for work you did not do is misconduct

• I trust you implicitly, but will come down hard on any violations of that trust
Lecture Notes

• Will be available before class online
• Feel free to bring them to class to take notes
Using Electronics in Class

• Opened laptops create disturbances to your neighbors
• Please sit in the back if you use your laptop to take notes
• OK if you use surfaces

• And please don’t check your email / sms / youtube / fb / etc during class
 – If people are doing this we will have to ban all laptops 😞
Student evals from fall 16…

- All the class materials are very interesting and mind-opening… Like it a lot!
- The practical applications of the concepts we learned such as sql queries, java application programming, and using cloud storage were all very informative.
- The instructor's enthusiasm. First half of class seemed very well designed.
- Alvin's humor and explanations of many difficult concept
Student evals from fall 16...

- More clarifications on homework setup.
- Faster grading
- Slow down a bit when teaching during class.
- The instructor's voice was often mumbled or quiet during lectures.
- Nothing. Thanks for the quarter! I felt I learned a lot.

Lesson: Do not wait till course evals to suggest changes!
Now onto the real stuff...
Outline of Today’s Lecture

• Overview of database management systems
 – Why they are helpful
 – What are some of their key features
 – What are some of their key concepts

• Course content
Database

What is a database?
Database

What is a database?
• A collection of files storing related data

Give examples of databases
Database Management System

What is a DBMS?

Give examples of DBMSs
Database Management System

What is a DBMS?

• A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

– Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
– Open source: MySQL (Sun/Oracle), PostgreSQL, CouchDB
– Open source library: SQLite

We will focus on relational DBMSs most quarter
An Example: Online Bookseller

• What data do we need?
 –
 –
 –
 –

• What capabilities on the data do we need?
 –
 –
 –
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 – Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
 – Data must be accessed efficiently, by many users
 – Data must be safe from failures and malicious users
Multi-user discussion

• Jane and John both have ID number for gift certificate (credit) of $200 they got as a wedding gift
 – Jane @ her office orders "The Selfish Gene, R. Dawkins" ($80)
 – John @ his office orders "Guns and Steel, J. Diamond" ($100)

• Questions:
 – What is the ending credit?
 – What if second book costs $130?
 – What if system crashes?
Discussion

• Did you ever encounter a data management problem?
 – Experimental data from a homework?
 – Personal data?
 – Other data?

• How did you manage your data?
Summary Required Data Management Functionality

1. Describe real-world entities in terms of stored data
2. Persistently store large datasets
3. Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters
4. Change structure (e.g., add attributes)
5. Concurrency control: enable simultaneous updates
6. Crash recovery
7. Security and integrity
DBMS Benefits

• Expensive to implement all these features inside the application

• DBMS provides these features (and more)

• DBMS simplifies application development
Who are the players?

• **DB application developer**: writes programs that query and modify data (344)
• **DB designer**: establishes schema (344)
• **DB administrator**: loads data, tunes system, keeps whole thing running (344, 444)
• **Data analyst**: data mining, data integration (344, 446)
• **DBMS implementor**: builds the DBMS (444)
Key Data Management Concepts

• **Data models**: how to describe real-world data
 – Relational, NoSQL, …

• **Declarative query language**
 – Say what you want not how to get it

• **Data independence**
 – Physical independence: Can change how data is stored on disk without maintenance to applications
 – Logical independence: can change schema w/o affecting apps

• **Query optimizer** and compiler

• **Physical design**

• **Transactions**: isolation and atomicity
What is this class about?

- **Focus: Using DBMSs**
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, datalog
- Semistructured Data Model
 - JSON (NoSQL)
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases and MapReduce
What to Do Now

http://www.cs.washington.edu/344

• Webquiz 1 is open
 – Create account at http://newgradiance.com/
 – Sign up for class online
 – Due on Tuesday 1/10, 11 pm

• Homework 1 is posted
 – Simple queries in SQL Lite
 – Due on Wednesday 1/11, 11 pm

• Sections tomorrow
 – Tutorial on SQL Lite

• Lecture tomorrow
 – Data models

• Sign up on overload website if you’re still trying to register
• Post on Piazza if you have questions about HW and lecture