
Database Systems
CSE 344

Section 9: Big Data & Review

1



Non-Parallel Query Evaluation

2



Example Schema

Product(pid, name, category)
– 10,000 tuples and 1,000 blocks
– 40 different categories

Order(store, pid, price, quantity)
– 1,000,000 tuples and 50,000 blocks
– prices range from $1 to $100

3



Example Query

Compute the total revenue, for each store, from 
electronics costing more than $5 each:

SELECT o.store, sum(o.price * o.quantity)
FROM Order o, Product p
WHERE o.pid = p.pid AND o.price > 5 AND

p.category = ‘electronics’
GROUP BY o.store

4



Problem 1

Give an RA expression that:
– computes the result of the query
– does not benefit from the indexes already present

Product

Order

ɣ store, sum(price×quanity) → rev

p store, rev

σprice > 5

⋈pid=pid

σcategory=‘electronics’



Problem 2

Estimate the cost of the RA expression from Problem 1
after filling in physical implementation details

– assume grouping / aggregation can be done on the fly

• Details:
– nested loop join
– write Products to temp T1
– grouping / aggregation done with in memory hash table

• Scan Product & writing to T1 costs 50k + 1k + 25
• Nested loop join costs 47.5k * 25 = 1,125k
• Total cost is 1,238,525 blocks (~1M is fine)

6



Problem 3

Give an RA expression that:
– computes the result of the query
– does benefit from the indexes already present

Product

Order

ɣ store, sum(price×quanity) → rev p store, rev

σprice > 5

⋈pid=pid
σcategory=‘electronics’



Problem 4

Estimate the cost of the RA expression from Problem 3
after filling in physical implementation details

– assume grouping / aggregation can be done on the fly

• Details:
– nested loop join using index on Product(pid)
– grouping / aggregation done with in memory hash table

• Lookup of Product costs 1 block
• Nested loop join costs 50k + 950k * 1 = 1000k
• Total cost is ~1M blocks (everything else on the fly)

8



Parallel Query Evaluation

9



Problem 5

Draw a pipeline that computes the same result in a 
parallel fashion using N nodes

O1,P1

ON,PN

select on O.price
& P.category

select on O.price
& P.category

O’1,P’1

O’N,P’N
shuffle on

O.pid & P.pid

join

join

shuffle on
store

R1

RN

aggregate

aggregate



Problem 6

Estimate the cost of executing the pipeline of Problem 5

• Only costs are on disk reads of input
– (everything should fit in memory)

• Each worker reads 50k/N + 1k/N blocks
• Since all workers are reading simultaneous, wait time 

is time to read 51k/N blocks (plus lower order work)

11



Problem 7

1. Does your analysis predict a linear speedup as 
more nodes are added?

Yes

2. Does your analysis predict a linear scaleup as more 
nodes are added?

Yes

3. How realistic is this?
Fair with a small number of machines, but
expect stragglers to be noticeable with 1000s

12



Problem 8

Describe how to achieve a similar speedup with MapReduce

• MapReduce does only one shuffle, so we need 2 jobs
• First job:

– map Orders to (pid,(‘O’, …)) and Products to (pid,(‘P’,...)
for those rows that satisfy selection criteria

– reducer adds product info to each order in the list
• note: only one Product in each list since pid is primary key

• Second job:
– map Order+Product to (store, (...))
– reducer sums revenue and outputs (store, revenue)



Problem 9

Would your MapReduce have the same IO cost and 
speedup as the pipeline from problem 6?

• MapReduce writes intermediate results to disk 
resulting in more IO
– Two intermediate results and two outputs written
– None of these are larger than the input, though, so the total 

cost is no more than 7x the ideal pipeline
• really 6x since the final output is small

• Despite a constant factor more IO, it should still have a 
linear speedup (in principle).

14


