
Database Systems
CSE 344

Lecture 24: ORM & Final Review

CSE 344 - Summer 2017 1

Announcements

• Final on Friday in Class!

• Please complete course evaluations!
– Summer schedule (what did you think)

– Feedback for me

– Deadline Thursday Aug 17

CSE 344 - Summer 2017 2

Object Relational Mapper

• Application code must mirror database
relations.

• User.java

• Flight.java

CSE 344 - Summer 2017 3

/** Stores information about a user in the database. */
public class User {

/** Stores the ID of the authenticated user. */
public final int id;

/** Stores the handle of the authenticated user. */
public final String handle;

/** Stores the full name of the authenticated user. */
public final String fullName;

/** Creates a User with the given properties. */
public User(int id, String handle, String fullName) {

this.id = id;
this.handle = handle;
this.fullName = fullName;

}

}

Object Relational Mapper

• Application code must mirror database
relations.

• Exp: User.java, Flight.java

• This creates repetition in code and more work
for developers.

• Solution: Write helper code to translate
objects into database tables and back.

CSE 344 - Summer 2017 4

Key Idea: Object Relational Mapper: ORM

Object Relational Mapper

• Language specific implementations
– Java: Hibernate, ActiveJDBC

– Python: SQLAlchemy, Django.db

– Ruby on Rails

CSE 344 - Summer 2017 5

Django Example

CSE 344 - Summer 2017 6

Django Example

CSE 344 - Summer 2017 7

• QuerySet Managers
– .create: create a new object

– .get: fetch a single object
• keywords go into the where clause

– filter: fetch multiple objects based on arguments
• .filter(pub_date__lt=dt.now()) -- all questions published before

today.

– RelatedManagers for foreign keys

– Database migrations

– Same code works with sqlite, MySQL and Postgress

ORM: Pros and Cons

• Pros
– Makes rapid development easy

– Handles the basic CRUD (create, read, update,
delete).

– Reduces code duplication and work needed to
keep database code inline with application code

• Cons
– Obfuscates SQL - if you don’t know SQL can lead

to bad design

– More complex queries will always require SQL

CSE 344 - Summer 2017 8

Final Exam

• Friday, August 18 2:20 - 3:20

• This room

• Closed books, no phones, no computers

• Allowed 2 pages of notes (both sides, 8+pt font)
– but focus of the test will not be memorization

• Primary focus on the second half
– More like a “second midterm”

CSE 344 - Summer 2017 9

Course Topics

1. Relational Data

2. DB Applications: Design & Implementation

3. Semistructured Data

4. DBMS Implementation

5. Big Data Systems

CSE 344 - Summer 2017 10

Relational Data

CSE 344 - Summer 2017 11

1a. Relational Data Model

• tables with schemas
– types for attributes

– primary, secondary, and foreign keys

– other constraints

• set semantics
– each tuple is either in the table or not

CSE 344 - Summer 2017 12

1b. Relational Queries

• relational query = expressible in standard RA
– RA = datalog+neg, also expressible with SQL

• simple SELECT-FROM-WHERE is a subset
– includes joins but not subqueries

– always monotone while RA isn’t (e.g. set difference)

• extended RA adds grouping & aggregation
– (also uses bag semantics)

• datalog adds recursion

CSE 344 - Summer 2017 13

CSE 344 - Summer 2017 14

standard RA
extended

RA

datalog + neg
+ recursion

datalog + neg

adds grouping
& aggregation

simple SFW

relational queries

1c. Datalog (not on Final)

• data comes from facts and rules
– P(a1, …, an).

– Q(a1, …, an) :- R1(ai, bk, …), R2(aj, bl, …),

• head is a fact iff there is some way to set bk’s so
that all terms in the body are facts
– variables only appearing in body (bk’s) are existential

• can be translated to SQL
– must be possible since datalog equivalent to RA

– but we didn’t discuss the details…

CSE 344 - Summer 2017 15

DB Applications:

Design & Implementation

CSE 344 - Summer 2017 16

2a. DB Design Process

companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema

Physical storage details

17

2a. DB Design Process

• E/R Diagrams
– entity sets, relations, & subclasses

– map each to relations
• multiple ways to do this (many-many, one-many)

only need to know the approach from class

– design principles:
• model accurately

• neither too few nor too many entities

CSE 344 - Summer 2017 18

2a. DB Design Process

• Constraints
– key, single-value, referential & other constraints

• other includes, e.g., positivity and non-null constraints

• Normalization
– eliminates anomalies

• redundancy, update, and deletion anomalies

– are indicated by “bad” functional dependencies

– apply BCNF decomposition to remove them
• these decompositions are never lossy (others can be)

CSE 344 - Summer 2017 19

2b. DB Application Implementation

• JDBC
– connect to DB from Java

– send SQL statements

– use transactions

• 3-tiered architecture for web applications

CSE 344 - Summer 2017 20

3-Tiered Architecture

DB Server

File 1

File 2

File 3

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web ServerCSE 344 - Summer 2017 21

2b. DB Application Implementation

• JDBC
– connect to DB from Java

– send SQL statements

– use transactions

• 3-tiered architecture for web applications
– usually JSON data btw web server & browser/phone

– why not use JSON to the DB too?
• otherwise, we need to translate JSON to relational

CSE 344 - Summer 2017 22

Semistructured Data

CSE 344 - Summer 2017 23

3a. Semistructured Data Model

• tree structured data: JSON, XML, etc.

• data is self-describing
– so schema is not necessary

• easy to map relation to JSON but not opposite

CSE 344 - Summer 2017 24

DBMS Implementation

CSE 344 - Summer 2017 25

4a. Storage & Indexing (not on
Final)
• B+ tree & hash indexes

– B+ tree index allows searching by key prefixes also

• understand when an index can be used
– (separate question from whether it improves perf)

• clustered vs unclustered
– clustered always speeds up query

but only one index per table can be clustered

– unclustered only speeds up if <1% tuples match

CSE 344 - Summer 2017 26

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query:

query optimization

Query Execution

SQL query

Return Results

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 344 - Summer 2017 27

Logical plans,
Physical plans

4b. Query Optimization (not on
Final)

• main cost is disk access

• many logical plans, many physical plans
– logical plans are RA expressions with desired result

– physical plans include e.g. choice of join algorithm
• hash, sorted merge, and (block refined) nested loop joins

• cost of many operations depends on selectivity

• optimization problem is hard
– saw SQL Server do poorly in homework problems

• realistic goal is to avoid really bad plans
CSE 344 - Summer 2017 28

4c. Transactions

• goal to allow many clients to run simultaneously
– OLTP workload: lots of clients with small read/writes

• need to provide ACID properties
– atomic: execute all SQL statements or none

– consistent: finish with all constraints satisfied

– isolation: behavior same as if one-at-a-time use

– durable: committed result are permanent (‘til changed)

• consistency maintained by checking constraints

• durability maintained by writing to disk(s)
CSE 344 - Summer 2017 29

4c. Transactions II

• isolation achieved through serializable schedules
– serializable means same behavior as a serial schedule

– conflict serializable means non-conflicting read/writes
can be swapped to make schedule serial

• stronger than (so implies) serializable

• locks ensure conflict serializability if 2PL used
– multiple read locks, only one write lock

• becomes 4 types in SQLite (a good design)

– lock granularity from (parts of) rows to tables to DB

– …
CSE 344 - Summer 2017 30

4c. Transactions III

– strict 2PL: no unlocks before commit/rollback
• needed for isolation if txns can roll back

– can produce deadlocks (as seen in homework)

– need more to prevent phantom rows
• phantom is a new row that shows up in a table

• predicate locks are one solution (but expensive)

• multi-version concurrency control is alternative

• default isolation level is usually not serializable
– faster perf but harder to write app (i.e., bugs likely)

CSE 344 - Summer 2017 31

Isolation Levels in SQL

– READ UNCOMMITTED (“Dirty reads”)

• Write: strict 2PL, Read: none

– READ COMMITTED (“Committed reads”)

• Write: strict 2PL, Read: Short-term

– REPEATABLE READ (“Repeatable reads”)

• Write: strict 2PL, Read: strict 2PL

– SERIALIZABLE (Serializable transactions)

• No phantom reads

CSE 344 - Summer 2017 32

ATOMIC

Systems for Big Data

CSE 344 - Summer 2017 33

5a. NoSQL Systems

• goal to support heavy OLTP workloads

• provides simplified data model
– key-value pairs, documents, or extensible records

• limited support for transactions
– usually pair/document/record level

– (some support for record groups… all on one node)

• partition data across nodes for scale

• replicate data to survive node failures

CSE 344 - Summer 2017 34

5b. Parallel Processing Systems

• for OLAP workloads (big reads, no txns)

• MapReduce
– programming model is one-to-many map function,

shuffle sort (grouping), one-to-many reduce function

– no built-in RA operators
• but easy to implement since since shuffle sort is provided

– stores intermediate data on disk
• reasonable if input/output is also to disk (otherwise too slow)

– deals with stragglers by running backup map tasks

CSE 344 - Summer 2017 35

5b. Parallel Processing Systems II

• Spark/Scala
– executes a dataflow pipeline using many nodes

– Spark handles failure by recomputing not replicating

• Spark SQL
– map SQL ~> extended RA ~> dataflow pipeline

– same approach can be used on any dataflow engine

CSE 344 - Summer 2017 36

5b. Parallel Processing Systems III

• existing systems do not optimize well
– none do real cost-based optimization

– Spark only performs small, syntactic optimizations
• one exception: choice of parallel vs broadcast join

– Spark has no indexes

– all require manual tuning

CSE 344 - Summer 2017 37

5c. Relational Parallel Databases

• support both OLTP and OLAP

• goal: more nodes => faster or allow more data
– speed up or scale up

• different architectures
– shared memory (SQL Server etc.): limited scale

– shared disk (mostly Oracle): limited scale

– shared nothing: really scales (so our focus)
• won out in academic research (started in 1980s)

• basis for parallel processing systems (see previous slides)
CSE 344 - Summer 2017 38

5c. Parallel Databases II

• Partition data across nodes (hash, range, etc.)

• Query evaluation
– only one new element: reshuffle

• move tuples to nodes based on values in certain columns

• basically same as shuffle sort of MapReduce

• use to implement all extended RA operations

– linear speed up or scale up in principle

– in practice, stragglers are a problem (though see MapReduce)

– new problem: skewed data
• may not all fit in memory of one node

39CSE 344 - Summer 2017

SQL (Everywhere)

CSE 344 - Summer 2017 40

5. SQL

• CREATE TABLE …
– PRIMARY KEY, UNIQUE, FOREIGN KEY

– CHECK (constraints) on columns or tuples

• CREATE [CLUSTERED] INDEX … ON ...

• INSERT INTO …

• UPDATE … SET ... WHERE ...

• DELETE FROM ... WHERE …

CSE 344 - Summer 2017 41

5. SQL (cont.)

• SELECT …
– JOINs: inner vs outer, natural

– GROUP BY, sum, count, avg, etc.

– ORDER BY

• SET ISOLATION LEVEL …

• BEGIN TRANSACTION

• COMMIT / ROLLBACK

CSE 344 - Summer 2017 42

