Introduction to Data Management
CSE 344

Lecture 24: MapReduce

CSE 344 - Summer 2017

Announcements

« HWY7 due yesterday
— With 2 late days due tomorrow

* Final next Friday (in class)
— 60 min (will give 75). Shorter than examples.
— Monday will be last lecture covered by exam.

« Evaluation:
https://uw.iasystem.org/survey/179899

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, ...)

Putting it Together:
Example Parallel Query Plan

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line 1

WHERE o.item = i.item ‘

AND o.date = today()

o.item = i.item

date = today()

SCan

ltem i Order o

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, ...)

Example ParaIIeI
Query Plan

\

o.item = i.item

date = today()

C scan > Ordero /

Node 1 Node 2 Node 3
hash hash hash
h(o.item) h(o.item) h(o.item)
Cselech select select

date=today()

date=today()

Scan Scan

Order o

Node 1

Order o

Node 2

date=today()

scan
Order o

Node 3

Order(oid, item, date), Line(item, ...)

Example Parallel

Query Plan

Node 1

hash

h(i.item)

SCan

ltem i

Node 1

Node 2

hash

h(i.item)

Scan

ltem i

Node 2

\

o.item = i.item

\ - Ordero /

hash

h(i.item)

SCan

ltem i

Node 3

Order(oid, item, date), Line(item, ...)

Example Parallel Query Plan

o.item = i.item o.item = i.item

o.item = i.item

Node 1 Node 2 Node 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 344 - Summer 2017 6

What's wrong with the relational
data model?

 From last class - NoSQL
L7 /’Hﬁ(€ Wo?Z 710 %wa A é(/ffm

* For parallel data processing:

— Want to control both data distribution and query
processing

— Want simpler programming model
« “I don’t want to learn SQL!” (non 344 student)

— Fault tolerance is important

CSE 344 - Summer 2017 7

Distributed File System (DFS)

For very large files: TBs, PBs

Each file is partitioned into chunks, typically
64MB

Each chunk is replicated several times (23),
on different racks, for fault tolerance

Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

CSE 344 - Summer 2017

Distributed File System (DFS)

Chunk 1 _ rextyndant

CSE 344 - Summer 2017

The Problem

 \Want to calculate in link counts for the entire
web.

* What you have:

— 30 billion webpages stored in GFS
— In 100MB chunks on 10,000 nodes

* What you want:
— List of pairs url : count (in bound link count)

CSE 344 - Summer 2017

10

The Solution

¢ Step 1
— For each html document create keys {url -> count}
— Distributed across all GFS nodes

o Step 2

— Partition keys on url over cluster.

¢ Step 3

— On each node sum up the total count of inbound
links for each URL.

{This Is Map Reduce } 1

Map Reduce Data Model

Started by Google in 2004
Instance: Files containing (key, value) pairs

Schema: None!
* just like other key-value data models

Query language: a MapReduce program:

 Input: a bag of (key, value) pairs

« Qutput: a bag of (key, value) pairs

* Implementation in Java (Hadoop), Python, Go, ...

CSE 344 - Summer 2017 12

Lifecycle of a MR Program

1. Read a lot of data and parse into (key, value)
pairs

2. Map: extract something you care about from
each (key, value) pair

3. Shuffle output from mappers
— done internally by implementation

4. Reduce: aggregate, summarize, filter, transform

5. Write the results to files

Paradigm stays the same,
change map and reduce

functions for different problems -

Step 2: the MAP Phase

User provides the MAP-function:
 |Input: (key, value)
* Output: bag of (intermediate key, value)

System applies the map function in parallel to all
(key, value) pairs in the input file

CSE 344 - Summer 2017

14

Step 3: the shuffle phase

System groups all pairs generated by MAPpers with the
same intermediate key

Passes the bag of values to the REDUCE function in next
stage

Example: given map output:
(“a”, 1), (“b", 1), (“a”, 2), (“c”, 1), (“c”, 5)

Shuffle produces the output:
(“a”, [1,2]), (“b”, [1]), (“c”, [1,5]) and partitions

This is just another (key, value) pair!

CSE 344 - Summer 2017 15

Step 4: the REDUCE Phase

User provides the REDUCE function:
* |Input: (intermediate key, bag of values)
« Output: bag of output (values)

CSE 344 - Summer 2017

16

Example

Counting the number of occurrences of each
word in a large collection of documents

 Each Document
— The key = document id (did)
— Thg(value = set of words (word) MJ

Y/
map(String key, String value): reduce(String key, Iterator values):
// key: document name /I key: a word
// value: document contents /I values: a list of “1”s
for each word w in value: int result = 0;
Emitintermediate(w, “1”); for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Map Reduce Data Model

Key Points:
Instance: Files containing (key, value) pairs

Schema: None!
* just like other key-value data models

Query language: a MapReduce program (No SQL):
 Input: a bag of (key, value) pairs

« Qutput: a bag of (key, value) pairs

* Implementation in Java (Hadoop), Python, Go, ...

CSE 344 - Summer 2017 18

MAP

(did1,v1)|—

(did2,v2)|—

(did3,v3) | —

(w1,1)

(w2,1)

(w3,1)

(w1,1)

(w2,1)

lllustration

REDUCE

Shuffle

w1, (1,1,1,...,1))

w2, (1,1,...))

(w1, 25)

(W3,(1...))

(W2, 77)

(W3, 12)

/i

CSE 344 - Summer 2017

19

Jobs v.s. Tasks

A MapReduce Job

— One single “query,” e.g., count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSE 344 - Summer 2017 20

Workers

* A worker is a process that executes one task
at a time

* Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - Summer 2017 21

MAP Tasks REDUCE Tasks
/
T — [wi1) Shuffle /

(did1,v1) [~ | wan -
> | (w3,1) 7 | (w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) — | w2, 77)
(did2,V2) | (wi,1) L | w3,(1...) ——— | w3, 12)
\ —_—> (w2,1)// :
\
(did3,v3) |— -
N
¥
— N
[] CSE 344 - Summer 2016 22

How can we optimize the sh fé‘IEe?

MAP
Shuffl
(w1,1) W// M
(did1,v1) w21
e (w3,1) w1, (1,1,1,...,1)) ——> | (w1, 25)
w2, (1,1,...)) — | w2, 77)
(did2,V2) | w11 w3,(1...)) ——— | w3, 12)
—> | w2,1) —> | ..
(did3,v3) |—
/M A u//
n,vi'
(0’“ %, Run Reduce function on each
Node before sh
New ste: Combine
CSE 34

How can we optimize the shuffle?

Input Files in HDFS

<K1,V1>
Mapper Mapper Mapper Mapper
s | s | s | s | x2,V2>
> 2 2 -
5 Partitioner 5 Partitioner 5 Partitioner 5 Partitioner
o o o o
: z : s <K2,V2>
S "
Combiner Combiner Combiner Combiner
<K2,V2>
Shuffle Phase
l <K2,V2> l Sorting happens in the
v Reducer node before the
Reducer Reducer Reducer Reducer consumes its input
key/value instances
<K3,V3>
Y

Output Files in HDFS

24

MapReduce Phases

Map Task

{P1} {P2}

Split

Record Reader—»Map —#'Combine

LR

- —

Reduce Task

{P 3} {P 4} {P 5}

—-—»‘ Copy }—bw—»‘ Reduce \

™ * §i

D
l file

‘ Local storage | —

HDFS

CSE 344 - Summer 2017 25

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk, partition
iInto R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

CSE 344 - Summer 2017 26

Interesting Implementation Detalls
Worker failure:
* Master pings workers periodically,
 |If down then reassigns the task to another

worker

CSE 414 - Spring 2016

27

Fault Tolerance

 |If one server fails once every year, how long
before a job running on 10,000 servers fails

— 1Th 10 min! (10,000/ (365 * 24))

 MapReduce handles fault tolerance by writing
Intermediate files to disk:
— Mappers write file to local disk

— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another

server

CSE 344 - Summer 2017 28

MapReduce Execution Details

i i Output to disk,
\ l replicated in cluster

Reduce Task

Intermedlate data
goes to local disk
o M
Map Task
Data not
necessarily local
File system: GFS
or HDFS

CSE 344 - Summer 2017

Interesting Implementation Detalls

Backup tasks:

« Straggler = a machine that takes unusually long
time to complete one of the last tasks. Eg:

— Bad disk forces frequent correctable errors (30MB/s -
1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

« Stragglers are a main reason for slowdown

» Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

CSE 414 - Spring 2016 30

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:

« Selection: 0,-41,3(R)

* GFOUp-by: VA,sum(B)(R)
- Join: RIK'S

CSE 414 - Spring 2016

31

Selection g,-4,(R)

map(String relationName, Tuple t):
if t.A==42:
EmitIntermediate(relationName, t);

reduce(String k, Iterator values):
for each v in values:
Emit(v);

CSE 344 - Summer 2017

32

Selection 0,_4,(R)

map(String relationName, Tuple t):

if t.A==42:

EmitIntermediate(relationName,

t);

N~

reduce(String kK, \<@1/values):

foreachvinv '
Emit(v

* Reduce isn’t really needed e N

« But MR requires reduce functions
CSE 344 - Summer 2017

33

Group By VA,sum(B)(R)

map(String relationName, Tuple t):
Emitintermediate(t.A, t.B);

%'% Iy

L /

reduce(String k, Iterator values):
s=0
for each v in values:
s=s+v
Emit(k, M);S

CSE 344 - Summer 2017 34

Implementing Join in MR
Two parallel join algorithms that we have seen:
 Partitioned hash-join

* Broadcast join

CSE 344 - Summer 2017

35

Parallel Execution of RA Operators:
Partitioned Hash-Join

« Data: R(K1,A, B), S(K2, B, C)

* Query: R(K1,A,B) x S(K2,B,C)
— Initially, both R and S are partitioned on K1 and K2

Reshuffle R on R.B
and Son S.B
g R,1, 8,1 R’2, 8’2 . . . R’P, S’P
Each server computes
the join locally

CSE 344 - Summer 2017

R1, S1 R2, 82 . e RP’ SP

R(A,B) xgz_- S(C,D)

Partitioned Hash-Join in MR

Or call hash(t.B)

map(String relationName, Tuple t):

switch (relationName):

case ‘R’: EmitIntermediate(t.B, IntKey(‘R’, value));
case ‘S’: EmitIntermediate(t.C, IntKey(‘S’, value));

All tuples here must join

A

CS

reduce(String k, Iterator values):
R=1[], S=1I1
for each v in values:
switch (v.relationName):
‘R’ :
‘S’: S.insert(v);
S for r in R, for s in S

>

R.insert(v);

E 344 - summer0tible (r,s)) ;

Data: R(A, B), S(C, D)
Query: R(A,B) xg_- S(C,D)

Broadcast Join

Broadcast S
Reshuffle R on R.B

R, R, . R,

CSE 344 - Summer 2017 38

R(A,B) xgz_- S(C,D)

Broadcast Join iIn MR

map should read
several records of R:
value = some group

of records

map(Tuple [] rs):
<§i= readFromNetwork() ;) 6{,/6A(&5

ht = new Hashtable() Read entire table S,
for each w in S: build a Hash Table

ht.insert(w.C, w)

for each r in ts:
for each s in ht.find(r.B):
Emit(Tuple(r,s));

reduce(..):
/* empty: map-side only */

CSE 344 - Summer 2017 39

Issues with MapReduce
 Difficult to write more complex queries

* Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

 We will talk about Spark in the next lecture

CSE 344 - Summer 2017

40

Conclusions

MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
avalilable server. However, skew is possible
(e.g., one huge reduce task)

Writing intermediate results to disk is
necessary for fault tolerance, but very slow.

Next time: Spark replaces this with
“Resilient Distributed Datasets”™ = main

. 41
memory + lineage

