
Introduction to Data Management
CSE 344

Lecture 24: MapReduce

CSE 344 - Summer 2017 1

Announcements

• HW7 due yesterday
– With 2 late days due tomorrow

• Final next Friday (in class)
– 60 min (will give 75). Shorter than examples.

– Monday will be last lecture covered by exam.

• Evaluation:
https://uw.iasystem.org/survey/179899

CSE 344 - Summer 2017 2

3

Putting it Together:
Example Parallel Query Plan

SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

4

Example Parallel
Query Plan

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

5

Example Parallel
Query Plan

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

6

Example Parallel Query Plan

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

What’s wrong with the relational
data model?

• From last class - NoSQL

• For parallel data processing:
– Want to control both data distribution and query

processing

– Want simpler programming model
• “I don’t want to learn SQL!” (non 344 student)

– Fault tolerance is important

CSE 344 - Summer 2017 7

Distributed File System (DFS)

• For very large files: TBs, PBs

• Each file is partitioned into chunks, typically
64MB

• Each chunk is replicated several times (≥3),
on different racks, for fault tolerance

• Implementations:
– Google’s DFS: GFS, proprietary

– Hadoop’s DFS: HDFS, open source

CSE 344 - Summer 2017 8

Distributed File System (DFS)

CSE 344 - Summer 2017 9

The Problem

• Want to calculate in link counts for the entire
web.

• What you have:
– 30 billion webpages stored in GFS

– In 100MB chunks on 10,000 nodes

• What you want:
– List of pairs url : count (in bound link count)

CSE 344 - Summer 2017 10

The Solution

• Step 1
– For each html document create keys {url -> count}

– Distributed across all GFS nodes

• Step 2
– Partition keys on url over cluster.

• Step 3
– On each node sum up the total count of inbound

links for each URL.

CSE 344 - Summer 2017 11This is Map Reduce

Map Reduce Data Model

Started by Google in 2004

Instance: Files containing (key, value) pairs

Schema: None!
• just like other key-value data models

Query language: a MapReduce program:
• Input: a bag of (key, value) pairs
• Output: a bag of (key, value) pairs
• Implementation in Java (Hadoop), Python, Go, …

12CSE 344 - Summer 2017

Lifecycle of a MR Program

1. Read a lot of data and parse into (key, value)
pairs

2. Map: extract something you care about from
each (key, value) pair

3. Shuffle output from mappers
– done internally by implementation

4. Reduce: aggregate, summarize, filter, transform

5. Write the results to files

13

Paradigm stays the same,
change map and reduce
functions for different problems

Step 2: the MAP Phase

User provides the MAP-function:

• Input: (key, value)

• Output: bag of (intermediate key, value)

System applies the map function in parallel to all
(key, value) pairs in the input file

14CSE 344 - Summer 2017

Step 3: the shuffle phase

• System groups all pairs generated by MAPpers with the
same intermediate key

• Passes the bag of values to the REDUCE function in next
stage

• Example: given map output:
(“a”, 1), (“b”, 1), (“a”, 2), (“c”, 1), (“c”, 5)

Shuffle produces the output:
(“a”, [1,2]), (“b”, [1]), (“c”, [1,5]) and partitions

• This is just another (key, value) pair!

15CSE 344 - Summer 2017

Step 4: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of values)

• Output: bag of output (values)

16CSE 344 - Summer 2017

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)

– The value = set of words (word)

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:
EmitIntermediate(w, “1”);

17

reduce(String key, Iterator values):

// key: a word

// values: a list of “1”s

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Key Points:

Instance: Files containing (key, value) pairs

Schema: None!
• just like other key-value data models

Query language: a MapReduce program (No SQL):
• Input: a bag of (key, value) pairs
• Output: a bag of (key, value) pairs
• Implementation in Java (Hadoop), Python, Go, …

Map Reduce Data Model

18CSE 344 - Summer 2017

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

19CSE 344 - Summer 2017

Illustration

Jobs v.s. Tasks

• A MapReduce Job
– One single “query,” e.g., count the words in all docs

– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - Summer 2017 20

Workers

• A worker is a process that executes one task
at a time

• Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - Summer 2017 21

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSE 344 - Summer 2016 22

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

23CSE 344 - Summer 2017

How can we optimize the shuffle?

Run Reduce function on each
Node before shuffle.
New step: Combine

24CSE 344 - Summer 2017

How can we optimize the shuffle?

Local storage`̀

MapReduce Phases

25CSE 344 - Summer 2017

Implementation
• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

• Workers write their output to local disk, partition
into R regions

• Master assigns workers to the R reduce tasks

• Reduce workers read regions from the map
workers’ local disks

26CSE 344 - Summer 2017

Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another
worker

CSE 414 - Spring 2016 27

Fault Tolerance

• If one server fails once every year, how long
before a job running on 10,000 servers fails
– 1h 10 min! (10,000 / (365 * 24))

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk

– Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another
server

CSE 344 - Summer 2017 28

MapReduce Execution Details

29

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk

Output to disk,
replicated in cluster

File system: GFS
or HDFS

Task

Task

CSE 344 - Summer 2017

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
– Bad disk forces frequent correctable errors (30MB/s 

1MB/s)
– The cluster scheduler has scheduled other tasks on

that machine

• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSE 414 - Spring 2016 30

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:

• Selection: σA=123(R)

• Group-by: γA,sum(B)(R)

• Join: R S

CSE 414 - Spring 2016 31

Selection σA=42(R)

32

map(String relationName, Tuple t):

if t.A == 42:

EmitIntermediate(relationName, t);

reduce(String k, Iterator values):
for each v in values:

Emit(v);

CSE 344 - Summer 2017

Selection σA=42(R)

33

map(String relationName, Tuple t):

if t.A == 42:

EmitIntermediate(relationName, t);

reduce(String k, Iterator values):
for each v in values:

Emit(v);

• Reduce isn’t really needed
• But MR requires reduce functions

CSE 344 - Summer 2017

Group By γA,sum(B)(R)

34

map(String relationName, Tuple t):
EmitIntermediate(t.A, t.B);

reduce(String k, Iterator values):

s = 0

for each v in values:

s = s + v

Emit(k, v);

CSE 344 - Summer 2017

Implementing Join in MR

Two parallel join algorithms that we have seen:

• Partitioned hash-join

• Broadcast join

CSE 344 - Summer 2017 35

Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1,A, B), S(K2, B, C)

• Query: R(K1,A,B) S(K2,B,C)
– Initially, both R and S are partitioned on K1 and K2

36

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 344 - Summer 2017

Partitioned Hash-Join in MR

37

map(String relationName, Tuple t):
switch (relationName):
case ‘R’: EmitIntermediate(t.B, IntKey(‘R’, value));
case ‘S’: EmitIntermediate(t.C, IntKey(‘S’, value));

reduce(String k, Iterator values):
R = []; S = [];
for each v in values:
switch (v.relationName):

‘R’: R.insert(v);
‘S’: S.insert(v);

for r in R, for s in S
Emit(Tuple(r,s));

R(A,B) B=C S(C,D)

Or call hash(t.B)

All tuples here must join

CSE 344 - Summer 2017

CSE 344 - Summer 2017 38

Data: R(A, B), S(C, D)
Query: R(A,B) B=C S(C,D)

Broadcast Join

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Broadcast Join in MR

39

map(Tuple [] rs):
S = readFromNetwork();
ht = new Hashtable()
for each w in S:
ht.insert(w.C, w)

for each r in ts:
for each s in ht.find(r.B):
Emit(Tuple(r,s));

reduce(…):
/* empty: map-side only */

map should read
several records of R:
value = some group

of records

Read entire table S,
build a Hash Table

R(A,B) B=C S(C,D)

CSE 344 - Summer 2017

Issues with MapReduce

• Difficult to write more complex queries

• Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

• We will talk about Spark in the next lecture

40CSE 344 - Summer 2017

Conclusions

• MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

• Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g., one huge reduce task)

• Writing intermediate results to disk is
necessary for fault tolerance, but very slow.

• Next time: Spark replaces this with
“Resilient Distributed Datasets” = main
memory + lineage

41

