
Database Systems
CSE 344

Lecture 22: NoSQL & JSON

(mostly not in textbook…

only Ch 11.1)
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Announcements

• HW7 Due Tomorrow (last assignment)

• Ask if you are unsure about how many late 
days you have left.
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NoSQL

CSE 344 - Summer 2017 3



NoSQL Motivation

• Originally motivated by Web 2.0 applications

• Goal is to scale simple OLTP-style workloads
to millions or billions of users
– Ex: Facebook has 1.3B daily active users

• use often correlated in time within in each region

• > 10M req/sec if 25% of users arrive within one hour

• SQL Server would crumble under that workload

• Users are doing both updates and reads
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What is the Problem?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for the entire functionality of DMBS
– as we will see next…

• NoSQL: reduce functionality for easier scaling
– Simpler data model

– Fewer guarantees
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Serverless Architecture
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User
SQLite:
• One data file
• One user
• One DBMS application

• Scales well!
• But only a limited number of 

scenarios work with such model
• (Can be in browser / phone!)

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk



Client-Server Architecture

Server Machine

Connection (JDBC, ODBC)
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Client 
Applications

• One server running the database

• Many clients, connecting via the ODBC or JDBC 
(Java Database Connectivity) protocol

Supports many apps and 
many users simultaneously

DB Server

File 1

File 2

File 3
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Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW7) or some C++ program

• Clients “talk” to server using JDBC/ODBC 
protocol
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3-Tiered Architecture

DB Server

File 1

File 2

File 3
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Browser
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3-Tiered Architecture

DB Server

File 1

File 2

File 3
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App+Web Server

Web-based applications

Connection

(e.g., JDBC)

HTTP/SSL

Browser
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3-Tiered Architecture

DB Server

File 1

File 2

File 3
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Why don’t we replicate
the DB server too?

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Replicate
App server
for scaleup
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Replicating the Database

• Much harder, because the state must be 
unique, in other words the database must act 
as a whole
– Current DB instance must be consistent always

• Ex: foreign keys must exist

• as a result, some updates must occur simultaneously

• Two basic approaches:
– Scale up through partitioning

– Scale up through replication
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Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database could fit in main memory

– Queries spread across these machines

• Can increase throughput 

• Easy for (simple) writes but reads become harder
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Transaction
starts here Also touches

data here

Three partitions



Scale Through Replication

• Create multiple copies of each database partition

• Spread queries across these replicas

• Can increase throughput and lower latency

• Can also improve fault-tolerance

• Easy for reads but writes become harder
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Some
requests

Other
requests

Three replicas



NoSQL Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS
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Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data

– Value = can be anything (very complex object)

• Operations
– Get(key), Put(key,value)

– Operations on value not supported

• Distribution / Partitioning
– No replication: key k is stored at server h(k)

– 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work?  How does put(k,v) work? 16



Example

• How would you represent the Flights data as key, 
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? 17



Key-Value Stores Internals

• Data remains in main memory
– one implementation: distributed hash table

• Most systems also offer a persistence option

• Others use replication to provide fault-tolerance
– Asynchronous or synchronous replication

– Tunable consistency: read/write one replica or majority

• Some offer transactions others do not
– multi-version concurrency control or locking
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Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS
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Document Stores Features

• Data model: (key,document) pairs
– Key = string/integer, unique for the entire data

– Document = JSON or XML

• Operations
– Get/put document by key

– Limited, non-standard query language on JSON

• Distribution / Partitioning
– Entire documents, as for key/value pairs

We will discuss JSon later today 20

Different From
Key Value Store



Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS
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Extensible Record Stores

• Based on Google’s BigTable
– HBase is an open source implementation of BigTable

• Data model is rows and columns 
– can add both new rows and new columns

• Scalability by splitting rows and columns over nodes
– Rows partitioned through hashing on primary key

– Columns of a table are distributed over multiple nodes by 
using “column groups”
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NoSQL Summary

• Simpler data model with weaker guarantees

• But they scale as far as we need them to

• Meanwhile…
SQL systems continue to improve
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Recent SQL Progress

• Modern systems need to store data across the globe
– individual data centers go offline

– need servers close to users to be efficient

• Speed of light is a fundamental limit
– 200+ms latency (across US) is visible to users

• Systems must weaken guarantees

• Google’s Spanner (supports SQL):

– write data over the whole globe (a bit slowly)

– reads occur slightly in the past
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JSon
An Example Semi-structured Data Format



Where We Are

• So far we have studied the relational data model
– Data is stored in tables (relations)

– Queries are expressions in the SQL / datalog / 
relational algebra

• Today: Semistructured data model
– Popular formats today: XML, JSon, protobuf
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JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C, 
C++, Java, Python, Perl, etc.

• The filename extension is .json.
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We will emphasize JSon as semi-structured data



JSON – Personal History

• 10 years ago…
– JavaScript interpreters were very slow

– native browser function parsed JSON 100x faster

• XML was also an option, but
– IE had a memory leak in its XML parser

• JSON used in Gmail etc. for this reason

• Spread organically to server-side systems
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JSon vs Relational

• Relational data model 
– Rigid flat structure (tables)

– Schema must be fixed in advanced

– Binary representation: good for performance, bad for exchange

– Query language based on Relational Calculus

• Semistructured data model / JSon
– Flexible, nested structure (trees)

– Does not require predefined schema ("self describing”)

– Text representation: good for exchange, bad for performance

– Most common use: Language API; query languages emerging
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JSon Syntax
{  "book": [

{"id":"01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id":"07",

"language": "C++",

"edition": "second"

"author": ”E. Sepp”,

“price”: 22.25

}

]

}
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JSon Terminology

• Curly braces hold objects 
– Each object is a list of name/value pairs separated 

by , (comma)

– Each pair is a name is followed by ':'(colon) 
followed by the value

• Square brackets hold arrays and values are 
separated by ,(comma).

• Data made up of objects, lists, and atomic 
values (integers, floats, strings, booleans).
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JSon Data Structures

• Collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}

– The “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]
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Avoid Using Duplicate Keys
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{"id":"07",

”title": ”Databases”,

"author": ”Garcia-Molina”,

"author": ”Ullman”,

"author": ”Widom”

}

{"id":"07",

”title": ”Databases”,

"author": [”Garcia-Molina”,

”Ullman”,

”Widom”]

}

The standard allows them, but many implementations don’t



JSon Datatypes

• Number

• String = double-quoted

• Boolean = true or false

• null / empty
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JSon Semantics: a Tree !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:

[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}
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JSon Data

• JSon is self-describing

• Schema elements become part of the data
– Relational schema: person(name,phone)

– In Json “person”, “name”, “phone” are part of the 
data, and are repeated many times

• Consequence: JSon is much more flexible
– also uses more space (but can be compressed)

• JSon is an example of semistructured data
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Mapping Relational Data to JSon
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name name namephone phone phone

“John” 3634 “Sue” “Dirk”6343 6363
Person

person

name phone

John 3634

Sue 6343

Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”,  ”phone”:6343},
{“name”: “Dirk”,  ”phone”:6383}
]

}

CSE 344 - Summer 2017



Mapping Relational Data to JSon
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Person

name phone

John 3634

Sue 6343

May inline foreign keys

Orders

personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,

“product”:”Gadget”}
]

},
{“name”: “Sue”,
“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}



39

JSon Semi-structured Data

• Missing attributes:

• Could represent in
a table with nulls 

name phone

John 1234

Joe -

{“person”:{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Joe”}]

}
no phone !
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JSon Semi-structured Data

• Repeated attributes

• Impossible in 
one table:

name phone

Mary 2345 3456 ???

{“person”:{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}
Two phones !
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JSon Semi-structured Data

• Attributes with different types in different objects

• Nested collections
• Heterogeneous collections

{“person”:{“person”:
[{“name”:”Sue”, “phone”:3456},
{“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]

}

Structured
name !
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JSON vs XML
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{“person”:

[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

<people>

<person name=“Mary”>

<address street=“Maple” no=“345” city=“Seattle”/>

</person>

<person name=“John”>

<address country=“Thailand”/>

<phone number=“2345678/>

</people>

JSON less verbose.  XML can be more strict
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YAML: Yet Another Markup 
Language
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{“person”:

[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

person:

- name: Mary

address: 

street: Maple

no: 345

city: Seattle

- name: John

address: Thailand

phone: 2345678

Whitespace delimited JSON. Even less verbose.



Next Time: Working with big data
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• MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing

• Google: paper published 2004

• Free variant: Hadoop


