
Database Systems
CSE 344

Lecture 22: NoSQL & JSON

(mostly not in textbook…

only Ch 11.1)

CSE 344 - Summer 2017 1

Announcements

• HW7 Due Tomorrow (last assignment)

• Ask if you are unsure about how many late
days you have left.

CSE 344 - Summer 2017 2

NoSQL

CSE 344 - Summer 2017 3

NoSQL Motivation

• Originally motivated by Web 2.0 applications

• Goal is to scale simple OLTP-style workloads
to millions or billions of users
– Ex: Facebook has 1.3B daily active users

• use often correlated in time within in each region

• > 10M req/sec if 25% of users arrive within one hour

• SQL Server would crumble under that workload

• Users are doing both updates and reads

CSE 344 - Summer 2017 4

What is the Problem?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for the entire functionality of DMBS
– as we will see next…

• NoSQL: reduce functionality for easier scaling
– Simpler data model

– Fewer guarantees

CSE 344 - Summer 2017 5

Serverless Architecture

CSE 344 - Summer 2017 6

User
SQLite:
• One data file
• One user
• One DBMS application

• Scales well!
• But only a limited number of

scenarios work with such model
• (Can be in browser / phone!)

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk

Client-Server Architecture

Server Machine

Connection (JDBC, ODBC)

7

Client
Applications

• One server running the database

• Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Supports many apps and
many users simultaneously

DB Server

File 1

File 2

File 3

CSE 344 - Summer 2017

8

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW7) or some C++ program

• Clients “talk” to server using JDBC/ODBC
protocol

CSE 344 - Summer 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

9

Browser

CSE 344 - Summer 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

10

App+Web Server

Web-based applications

Connection

(e.g., JDBC)

HTTP/SSL

Browser

CSE 344 - Summer 2017

3-Tiered Architecture

DB Server

File 1

File 2

File 3

11

Why don’t we replicate
the DB server too?

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Replicate
App server
for scaleup

CSE 344 - Summer 2017

Replicating the Database

• Much harder, because the state must be
unique, in other words the database must act
as a whole
– Current DB instance must be consistent always

• Ex: foreign keys must exist

• as a result, some updates must occur simultaneously

• Two basic approaches:
– Scale up through partitioning

– Scale up through replication
CSE 344 - Summer 2017 12

Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database could fit in main memory

– Queries spread across these machines

• Can increase throughput

• Easy for (simple) writes but reads become harder

CSE 344 - Summer 2017 13

Transaction
starts here Also touches

data here

Three partitions

Scale Through Replication

• Create multiple copies of each database partition

• Spread queries across these replicas

• Can increase throughput and lower latency

• Can also improve fault-tolerance

• Easy for reads but writes become harder

CSE 344 - Summer 2017 14

Some
requests

Other
requests

Three replicas

NoSQL Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Summer 2017 15

☞

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data

– Value = can be anything (very complex object)

• Operations
– Get(key), Put(key,value)

– Operations on value not supported

• Distribution / Partitioning
– No replication: key k is stored at server h(k)

– 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work? 16

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? 17

Key-Value Stores Internals

• Data remains in main memory
– one implementation: distributed hash table

• Most systems also offer a persistence option

• Others use replication to provide fault-tolerance
– Asynchronous or synchronous replication

– Tunable consistency: read/write one replica or majority

• Some offer transactions others do not
– multi-version concurrency control or locking

CSE 344 - Summer 2017 18

Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Summer 2017 19

☞

Document Stores Features

• Data model: (key,document) pairs
– Key = string/integer, unique for the entire data

– Document = JSON or XML

• Operations
– Get/put document by key

– Limited, non-standard query language on JSON

• Distribution / Partitioning
– Entire documents, as for key/value pairs

We will discuss JSon later today 20

Different From
Key Value Store

Data Models

Taxonomy based on data models:

• Key-value stores
– e.g., Project Voldemort, Memcached

• Document stores
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Summer 2017 21

☞

Extensible Record Stores

• Based on Google’s BigTable
– HBase is an open source implementation of BigTable

• Data model is rows and columns
– can add both new rows and new columns

• Scalability by splitting rows and columns over nodes
– Rows partitioned through hashing on primary key

– Columns of a table are distributed over multiple nodes by
using “column groups”

CSE 344 - Summer 2017 22

NoSQL Summary

• Simpler data model with weaker guarantees

• But they scale as far as we need them to

• Meanwhile…
SQL systems continue to improve

CSE 344 - Summer 2017 23

Recent SQL Progress

• Modern systems need to store data across the globe
– individual data centers go offline

– need servers close to users to be efficient

• Speed of light is a fundamental limit
– 200+ms latency (across US) is visible to users

• Systems must weaken guarantees

• Google’s Spanner (supports SQL):

– write data over the whole globe (a bit slowly)

– reads occur slightly in the past
CSE 344 - Summer 2017 24

CSE 344 - Summer 2017 25

JSon
An Example Semi-structured Data Format

Where We Are

• So far we have studied the relational data model
– Data is stored in tables (relations)

– Queries are expressions in the SQL / datalog /
relational algebra

• Today: Semistructured data model
– Popular formats today: XML, JSon, protobuf

CSE 344 - Summer 2017 26

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSE 344 - Summer 2017 27

We will emphasize JSon as semi-structured data

JSON – Personal History

• 10 years ago…
– JavaScript interpreters were very slow

– native browser function parsed JSON 100x faster

• XML was also an option, but
– IE had a memory leak in its XML parser

• JSON used in Gmail etc. for this reason

• Spread organically to server-side systems

CSE 344 - Summer 2017 28

JSon vs Relational

• Relational data model
– Rigid flat structure (tables)

– Schema must be fixed in advanced

– Binary representation: good for performance, bad for exchange

– Query language based on Relational Calculus

• Semistructured data model / JSon
– Flexible, nested structure (trees)

– Does not require predefined schema ("self describing”)

– Text representation: good for exchange, bad for performance

– Most common use: Language API; query languages emerging

CSE 344 - Summer 2017 29

30

JSon Syntax
{ "book": [

{"id":"01",

"language": "Java”,

"author": ”H. Javeson”,

“year”: 2015

},

{"id":"07",

"language": "C++",

"edition": "second"

"author": ”E. Sepp”,

“price”: 22.25

}

]

}

CSE 344 - Summer 2017

JSon Terminology

• Curly braces hold objects
– Each object is a list of name/value pairs separated

by , (comma)

– Each pair is a name is followed by ':'(colon)
followed by the value

• Square brackets hold arrays and values are
separated by ,(comma).

• Data made up of objects, lists, and atomic
values (integers, floats, strings, booleans).

CSE 344 - Summer 2017 31

JSon Data Structures

• Collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}

– The “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]

CSE 344 - Summer 2017 32

Avoid Using Duplicate Keys

CSE 344 - Summer 2017 33

{"id":"07",

”title": ”Databases”,

"author": ”Garcia-Molina”,

"author": ”Ullman”,

"author": ”Widom”

}

{"id":"07",

”title": ”Databases”,

"author": [”Garcia-Molina”,

”Ullman”,

”Widom”]

}

The standard allows them, but many implementations don’t

JSon Datatypes

• Number

• String = double-quoted

• Boolean = true or false

• null / empty

CSE 344 - Summer 2017 34

35

JSon Semantics: a Tree !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:

[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

CSE 344 - Summer 2017

36

JSon Data

• JSon is self-describing

• Schema elements become part of the data
– Relational schema: person(name,phone)

– In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

• Consequence: JSon is much more flexible
– also uses more space (but can be compressed)

• JSon is an example of semistructured data

CSE 344 - Summer 2017

Mapping Relational Data to JSon

37

name name namephone phone phone

“John” 3634 “Sue” “Dirk”6343 6363
Person

person

name phone

John 3634

Sue 6343

Dirk 6363

{“person”:
[{“name”: “John”, “phone”:3634},
{“name”: “Sue”, ”phone”:6343},
{“name”: “Dirk”, ”phone”:6383}
]

}

CSE 344 - Summer 2017

Mapping Relational Data to JSon

38

Person

name phone

John 3634

Sue 6343

May inline foreign keys

Orders

personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,

“product”:”Gadget”}
]

},
{“name”: “Sue”,
“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}

39

JSon Semi-structured Data

• Missing attributes:

• Could represent in
a table with nulls

name phone

John 1234

Joe -

{“person”:{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Joe”}]

}
no phone !

CSE 344 - Summer 2017

40

JSon Semi-structured Data

• Repeated attributes

• Impossible in
one table:

name phone

Mary 2345 3456 ???

{“person”:{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}
Two phones !

CSE 344 - Summer 2017

41

JSon Semi-structured Data

• Attributes with different types in different objects

• Nested collections
• Heterogeneous collections

{“person”:{“person”:
[{“name”:”Sue”, “phone”:3456},
{“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]

}

Structured
name !

CSE 344 - Summer 2017

42

JSON vs XML

CSE 344 - Summer 2017

{“person”:

[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

<people>

<person name=“Mary”>

<address street=“Maple” no=“345” city=“Seattle”/>

</person>

<person name=“John”>

<address country=“Thailand”/>

<phone number=“2345678/>

</people>

JSON less verbose. XML can be more strict

43

YAML: Yet Another Markup
Language

CSE 344 - Summer 2017

{“person”:

[{“name”: “Mary”,

“address”:
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]

}

person:

- name: Mary

address:

street: Maple

no: 345

city: Seattle

- name: John

address: Thailand

phone: 2345678

Whitespace delimited JSON. Even less verbose.

Next Time: Working with big data

CSE 344 - Summer 2017 44

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

• Google: paper published 2004

• Free variant: Hadoop

