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Announcements

• WQ7 due tonight

• HW7 due on Thursday
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Welcome to the 2nd half of 344
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• Relational data model
– Instance

– Schema

– Query languages
• SQL, RA, RC, Datalog

• Query processing
– Logical & physical plans

– Indexes

– Cost estimation

– Query optimization

• Non-relational data model

• Conceptual design
– E/R diagrams

– Converting to SQL

– Normalization

• Transactions
– ACID

– Transaction Implementation

– Writing DB applications

• Parallel query processing
– MapReduce

– Spark
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Today

• Architecture of parallel DBMSs

• Distributing data to multiple machines

• Executing relational query operators in 
parallel

• Alternative data models for parallel DBMSs
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Why compute in parallel?

• Multi-cores:
– Most processors have multiple cores

– This trend will increase in the future

• Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x 

servers

– Widely available now using cloud services
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Performance Metrics 
for Parallel DBMSs

Nodes = processors, computers

• Speedup: 
– More nodes, same data  higher speed

• Scaleup:
– More nodes, more data  same speed
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Linear v.s. Non-linear Speedup
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# nodes (=P)

Speedup
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×1 ×5 ×10 ×15



Linear v.s. Non-linear Scaleup

# nodes (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15
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Why Sub-linear Speedup and 
Scaleup?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew/Stragglers
– Slowest node becomes the bottleneck
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory
• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a 
single machine and can leverage 
many threads to speed up a query
• check your HW3 query plans

• Easy to use and program
• Expensive to scale

– last remaining cash cows in the 
hardware industry
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Interconnection 
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Memory
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StackOverflow Hardware
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https://nickcraver.com/blog/2016/03/29/stack-overflow-the-hardware-2016-edition/

SQL Servers (Stack Overflow Cluster)

• 2 Dell R720xd Servers, each with:
• Dual E5-2697v2 Processors (12 cores @2.7–3.5GHz 

each)
• 384 GB of RAM (24x 16 GB DIMMs)
• 1x Intel P3608 4 TB NVMe PCIe SSD (RAID 0, 2 

controllers per card)
• 24x Intel 710 200 GB SATA SSDs (RAID 10)
• Dual 10 Gbps network (Intel X540/I350 NDC)



Shared Disk
• All nodes access the same disks
• Found in the largest "single-box" 

(non-cluster) multiprocessors

Example: Oracle

• No need to worry about shared 
memory

• Hard to scale: existing 
deployments typically have fewer 
than 10 machines
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Shared Nothing
• Cluster of commodity machines on 

high-speed network

• Called "clusters" or "blade servers”

• Each machine has its own memory 
and disk: lowest contention.

Example: Google

Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on 
a single physical machine.

• Easy to maintain and scale

• Most difficult to administer and tune.
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Parallel Data Processing @ 1990
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Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– Good for transactional workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?
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Single Node Query Processing 
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection:  σA=123(R)
– Scan file R, select records with A=123

• Group-by:  γA,sum(B)(R)
– Scan file R, insert into a hash table using A as key
– When a new key is equal to an existing one, add B to the value

• Join:  R S
– Scan file S, insert into a hash table using B as key
– Scan file R, probe the hash table using B
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Distributed Query Processing

• Data is horizontally partitioned on many 
servers

• Operators may require data reshuffling

• First let’s discuss how to distribute data 
across multiple nodes / servers
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Horizontal Data Partitioning
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1 2 P .  .  .

Data: Servers:

K A B

… …



Horizontal Data Partitioning
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K A B

… …

1 2 P .  .  .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?



Horizontal Data Partitioning

• Block Partition: 
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1
– Recall: calling hash fn’s is free in this class

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Uniform Data v.s. Skewed Data

• Let R(K,A,B,C); which of the following 
partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition
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Parallel GroupBy

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

How can we compute in each case?

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K
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easy case!
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Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

24

R1 R2 RP .  .  .

R1’ R2’ RP’

.  .  .

Reshuffle R
on attribute A
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Run grouping 
on reshuffled

partitions



Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)

– Runtime: only consider I/O costs

• If we double the number of nodes P, what is 
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is 
the new running time?
– Same (each server holds the same # of chunks)
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Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)

• Query: R(K1, A, B) S(K2, B, C)
– Initially, both R and S are partitioned on K1 and K2
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R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally
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Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) S(K2,B,C)
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K1 B
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101 50
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3 20

4 20

K2 B

201 20

202 50

R1 S1 R2 S2
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R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

Partition

Local 
Join

Parallel Join Illustration
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Data: R(A, B), S(C, D)
Query: R(A,B) B=C S(C,D)

Broadcast Join

R1 R2 RP.  .  .

R’1, S R’2, S R’P, S.  .  .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?
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Putting it Together:
Example Parallel Query Plan

SELECT * 
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)
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Example Parallel 
Query Plan

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o
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Example Parallel 
Query Plan

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i
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Example Parallel Query Plan

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all 
lines where hash(item) = 1

contains all orders and all 
lines where hash(item) = 2

contains all orders and all 
lines where hash(item) = 3
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Order(oid, item, date), Line(item, …)


