
Introduction to Data Management
CSE 344

Lecture 21: Parallel DBMSs

CSE 344 - Summer 2017 1

Announcements

• WQ7 due tonight

• HW7 due on Thursday

CSE 344 - Summer 2017 2

Welcome to the 2nd half of 344

3

• Relational data model
– Instance

– Schema

– Query languages
• SQL, RA, RC, Datalog

• Query processing
– Logical & physical plans

– Indexes

– Cost estimation

– Query optimization

• Non-relational data model

• Conceptual design
– E/R diagrams

– Converting to SQL

– Normalization

• Transactions
– ACID

– Transaction Implementation

– Writing DB applications

• Parallel query processing
– MapReduce

– Spark
CSE 344 - Summer 2017

Today

• Architecture of parallel DBMSs

• Distributing data to multiple machines

• Executing relational query operators in
parallel

• Alternative data models for parallel DBMSs

CSE 344 - Summer 2017 4

Why compute in parallel?

• Multi-cores:
– Most processors have multiple cores

– This trend will increase in the future

• Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x

servers

– Widely available now using cloud services

CSE 344 - Summer 2017 5

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

• Speedup:
– More nodes, same data  higher speed

• Scaleup:
– More nodes, more data  same speed

CSE 344 - Summer 2017 6

Linear v.s. Non-linear Speedup

CSE 344 - Summer 2017

nodes (=P)

Speedup

7

×1 ×5 ×10 ×15

Linear v.s. Non-linear Scaleup

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSE 344 - Summer 2017 8

Ideal

Why Sub-linear Speedup and
Scaleup?

• Startup cost
– Cost of starting an operation on many nodes

• Interference
– Contention for resources between nodes

• Skew/Stragglers
– Slowest node becomes the bottleneck

CSE 344 - Summer 2017 9

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

CSE 344 - Summer 2017 10

Shared Memory
• Nodes share both RAM and disk
• Dozens to hundreds of processors

Example: SQL Server runs on a
single machine and can leverage
many threads to speed up a query
• check your HW3 query plans

• Easy to use and program
• Expensive to scale

– last remaining cash cows in the
hardware industry

CSE 344 - Summer 2017 11

Interconnection
Network

P P P

Global Shared
Memory

D D D

StackOverflow Hardware

CSE 344 - Summer 2017 12

https://nickcraver.com/blog/2016/03/29/stack-overflow-the-hardware-2016-edition/

SQL Servers (Stack Overflow Cluster)

• 2 Dell R720xd Servers, each with:
• Dual E5-2697v2 Processors (12 cores @2.7–3.5GHz

each)
• 384 GB of RAM (24x 16 GB DIMMs)
• 1x Intel P3608 4 TB NVMe PCIe SSD (RAID 0, 2

controllers per card)
• 24x Intel 710 200 GB SATA SSDs (RAID 10)
• Dual 10 Gbps network (Intel X540/I350 NDC)

Shared Disk
• All nodes access the same disks
• Found in the largest "single-box"

(non-cluster) multiprocessors

Example: Oracle

• No need to worry about shared
memory

• Hard to scale: existing
deployments typically have fewer
than 10 machines

CSE 344 - Summer 2017 13

Interconnection
Network

P P P

D D D

M M M

Shared Nothing
• Cluster of commodity machines on

high-speed network

• Called "clusters" or "blade servers”

• Each machine has its own memory
and disk: lowest contention.

Example: Google

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

• Easy to maintain and scale

• Most difficult to administer and tune.

14CSE 344 - Summer 2017We discuss only Shared Nothing in class

Interconnection
Network

P P P

D D D

M M M

Parallel Data Processing @ 1990

CSE 344 - Summer 2017 15

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– Good for transactional workloads

• Inter-operator parallelism
– Operator per node
– Good for analytical workloads

• Intra-operator parallelism
– Operator on multiple nodes
– Good for both?

CSE 344 - Summer 2017We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

16

Single Node Query Processing
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection: σA=123(R)
– Scan file R, select records with A=123

• Group-by: γA,sum(B)(R)
– Scan file R, insert into a hash table using A as key
– When a new key is equal to an existing one, add B to the value

• Join: R S
– Scan file S, insert into a hash table using B as key
– Scan file R, probe the hash table using B

CSE 344 - Summer 2017 17

Distributed Query Processing

• Data is horizontally partitioned on many
servers

• Operators may require data reshuffling

• First let’s discuss how to distribute data
across multiple nodes / servers

CSE 344 - Summer 2017 18

Horizontal Data Partitioning

CSE 344 - Summer 2017 19

1 2 P . . .

Data: Servers:

K A B

… …

Horizontal Data Partitioning

CSE 344 - Summer 2017 20

K A B

… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

• Block Partition:
– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1
– Recall: calling hash fn’s is free in this class

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

21CSE 344 - Summer 2017

Uniform Data v.s. Skewed Data

• Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 344 - Summer 2017 22Keep this in mind in the next few slides

Parallel GroupBy

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

How can we compute in each case?

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K

23

easy case!

CSE 344 - Summer 2017

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)

Query: γA,sum(C)(R)

• R is block-partitioned or hash-partitioned on K

24

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSE 344 - Summer 2017

Run grouping
on reshuffled

partitions

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)

– Runtime: only consider I/O costs

• If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE 344 - Summer 2017 25

Parallel Execution of RA Operators:
Partitioned Hash-Join

• Data: R(K1, A, B), S(K2, B, C)

• Query: R(K1, A, B) S(K2, B, C)
– Initially, both R and S are partitioned on K1 and K2

26

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 344 - Summer 2017

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) S(K2,B,C)

CSE 344 - Summer 2017 27

K1 B

1 20

2 50

K2 B

101 50

102 50

K1 B

3 20

4 20

K2 B

201 20

202 50

R1 S1 R2 S2

K1 B

1 20

3 20

4 20

K2 B

201 20

K1 B

2 50

K2 B

101 50

102 50

202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle on B

Partition

Local
Join

Parallel Join Illustration

CSE 344 - Summer 2017 28

Data: R(A, B), S(C, D)
Query: R(A,B) B=C S(C,D)

Broadcast Join

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

29

Putting it Together:
Example Parallel Query Plan

SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

30

Example Parallel
Query Plan

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

31

Example Parallel
Query Plan

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

32

Example Parallel Query Plan

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 344 - Summer 2017

Order(oid, item, date), Line(item, …)

