Introduction to Data Management
CSE 344

Lecture 21: Parallel DBMSs

Announcements

« WQ7 due tonight
« HWY7 due on Thursday

Welcome to the 2nd half of 344

Relational data model

Instance
Schema

Query languages
« SQL, RA, RC, Datalog

* Query processing

Logical & physical plans
Indexes

Cost estimation

Query optimization

Non-relational data model

CSE 344 - Summ

« Conceptual design
— E/R diagrams
— Converting to SQL
— Normalization

« Transactions
— ACID
— Transaction Implementation
— Writing DB applications

« Parallel query processing
— MapReduce

pr 2017 Spark 3

Today

Architecture of parallel DBMSs
Distributing data to multiple machines

Executing relational query operators in
parallel

Alternative data models for parallel DBMSs

CSE 344 - Summer 2017

Why compute in parallel?

* Multi-cores:
— Most processors have multiple cores
— This trend will increase in the future

* Big data: too large to fit in main memory

— Distributed query processing on 100x-1000x
servers

— Widely available now using cloud services

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

« Speedup:

— More nodes, same data =» higher speed

» Scaleup:
— More nodes, more data =» same speed

Linear v.s. Non-linear Speedup

Speedup

\686\

I
nodes (=P)

Linear v.s. Non-linear Scaleup

Batch
Scaleup

Ideal

| I I
nodes (=P) AND data size

Why Sub-linear Speedup and
Scaleup?

o Startup cost
— Cost of starting an operation on many nodes

e |Interference
— Contention for resources between nodes

« Skew/Stragglers
— Slowest node becomes the bottleneck

CSE 344 - Summer 2017

Architectures for Parallel
Databases

* Shared memory

 Shared disk

* Shared nothing

Shared Memory

* Nodes share both RAM and disk
* Dozens to hundreds of processors

y4s

4 ! ' '
Interconnection

Example: SQL Server runs on a
single machine and can leverage
Network many threads to speed up a query
A

« check your HW3 query plans

Global Shared

Memory « Easy to use and program —~ SQL

* EXxpensive to scale
— last remaining cash cows in the

E j E jE j hardware industry

CSE 344 - Summer 2017 11

StackOverflow Hardware

SQL Servers (Stack Overflow Cluster)

« 2 Dell R720xd Servers, each with:

* Dual E5-2697v2 Processors (12 cores @2.7-3.5GHz
each)

« 384 GB of RAM (24x 16 GB DIMMs)

* 1x Intel P3608 4 TB NVMe PCle SSD (RAID 0, 2
controllers per card)

« 24x Intel 710 200 GB SATA SSDs (RAID 10)

* Dual 10 Gbps network (Intel X540/I1350 NDC)

https://nickcraver.com/blog/2016/03/29/stack-overflow-the-hardware-2016-edition/

CSE 344 - Summer 2017 12

Shared Disk

» All nodes access the same disks
* Found in the largest "single-box"
(non-cluster) multiprocessors

Example: Oracle

M M M
|
. * No need to worry about shared
Interconnection memory
Network

* Hard to scale: existing
deployments typically have fewer

Eﬁ Eiii than 10 machines

CSE 344 - Summer 2017 13

Shared Nothing

[Interconnection

Network

|

¢

M

M

> o

Cluster of commodity machines on
high-speed network

« (Called "clusters" or "blade servers”

« Each machine has its own memory
and disk: lowest contention.

Example: Google

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

« Easy to maintain and scale
 Most difficult to administer and tune.

We discuss only Shared Nothing in class} 14

Parallel Data Processing @ 1990

CSE 344 - Summer 2017

15

Approaches to

Parallel Query Evaluation .

 Inter-query parallelism
— Transaction per node
— Good for transactional workloads

* Inter-operator parallelism
— Operator per node
— Good for analytical workloads

 Intra-operator parallelism

— Operator on multiple nodes
— Good for both?

<id=cid

Product Purchase

LWe study only intra-operator parallelism

: most scalable}

Single Node Query Processing

(Review)
Given relations R(A,B) and S(B, C), no indexes:

« Selection: g,_15(R)
— Scan file R, select records with A=123

* Group-by: VA,sum(B)(R)
— Scan file R, insert into a hash table using A as key
— When a new key is equal to an existing one, add B to the value

« Join: RIS
— Scan file S, insert into a hash table using B as key
— Scan file R, probe the hash table using B

Distributed Query Processing

« Data is horizontally partitioned on many
servers

* Operators may require data reshuffling

* First let’'s discuss how to distribute data
across multiple nodes / servers

Data:

Horizontal Data Partitioning

Servers:

TP
>

CSE 344 - Summer 2017

19

Data:

Horizontal Data Partitioning

Servers:

TP
>

J

> Which tuples
go to what server?

CSE 344 - Summer 2017

20

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

* Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1
— Recall: calling hash fn’s is free in this class
L2 panef N2V
* Range partitioned on attribute A:
— Partition the range of Ainto -©» =v,<v,<...<vp=
— Tuple t goes to chunk i, if v, <t. A<V,

Uniform Data v.s. Skewed Data

* Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition S—
¢ HaSh'partltlon Assuming good
B On the ke K Uniform hash function
y E.g. when all records

. have th valu
- On the attnbUte A May be skewed o?tr?e atetr?t?:’::A?th(:n
all records end up in the

Keep this in mind in the next few slides

Parallel GroupBy

Data: R(K,A,B,C)
Query: Ya sumc)(R)

How can we compute in each case?

R IS hash-partitioned on A
R Is block-partitioned

R IS hash-partitioned on K

easy case!

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)

Query: Ya sumc)(R)
* R is block-partitioned or hash-partitioned on K

Reshuffle R
on attribute A

Run grouping R1’ Rz’ Rp,
on reshuffled
partitions -

R, R, S Rp

CSE 344 - Summer 2017 24

Speedup and Scaleup

» Consider:

— Query: Y sum(c)(R)

— Runtime: only consider I/O costs
 |f we double the number of nodes P, what is

the new running time??

— Half (each server holds % as many chunks) |4\ ol
 |f we double both P and the size of R, what is

the new running time??
— Same (each server holds the same # of chunks)

CSE 344 - Summer 2017 25

Parallel Execution of RA Operators:

Partitioned Hash-Join

« Data: R(K1, A, B), S(K2, B, C)

+ Query: R(K1,A,(B) x S(K2, B, C)
— Initially, both R and S are partitioned on K1 and K2

Reshuffle R on R.B
and Son S.B

Each server computes
the join locally

Ri, Sy

Ry, S,

R’y S

CSE 344 - Summer 2017

R’Z’ S’2

26

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) x S(K2,B,C) Parallel Join lllustration

R1 S1 R2 S2

K1 B K2 |B K1 B K2 |B
Partition 1 20 101 | 50 3 20 201 |20

2 50 102 |50 4 20 202 |50

M1 M2

Shuffle on B

RT ST’ RY’ 5y’

K1 B K2 |B K1 B K2 |B
Local 1 20 D201 |20 2 50 D101 |50
Join 3 20 102 |50

4 20 M1 M2 202 |50

CSE 344 - Summer 2017 27

Data: R(A, B), S(C, D)
Query: R(A,B) xg_- S(C,D)

Broadcast Join

Broadcast S
Reshuffle R on R.B

R, R, L Ro

M/

R,, S R, S ... R, S

[Why would you want to do this? J

CSE 344 - Summer 2017 28

Order(oid, item, date), Line(item, ...)

Putting it Together:
Example Parallel Query Plan

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line 1

WHERE o.item = i.item ‘

AND o.date = today()

o.item = i.item

date = today()

SCan

ltem i Order o

CSE 344 - Summer 2017 29

Order(oid, item, date), Line(item, ...)

Example ParaIIeI
Query Plan

\

o.item = i.item

date = today()

C scan > Ordero /

Node 1 Node 2 Node 3
hash hash hash
h(o.item) h(o.item) h(o.item)
Cselech select select

date=today()

date=today()

Scan Scan

Order o

Node 1

Order o

Node 2

date=today()

scan
Order o

Node 3

Order(oid, item, date), Line(item, ...)

Example Parallel

Query Plan

Node 1

hash

h(i.item)

SCan

ltem i

Node 1

Node 2

hash

h(i.item)

Scan

ltem i

Node 2

\

o.item = i.item

\ - Ordero /

hash

h(i.item)

SCan

ltem i

Node 3

Order(oid, item, date), Line(item, ...)

Example Parallel Query Plan

o.item = i.item o.item = i.item

o.item = i.item

Node 1 Node 2 Node 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 344 - Summer 2017 32

