
Database Systems
CSE 344

Lecture 20: 
Transaction Implementations

CSE 344 - Summer 2017 1



Announcements

• WQ7 (last!) due Monday Aug 7

• HW7:
– due on Thursday, Aug 10

– using JDBC to execute SQL from Java

– using SQL Server via Azure

• Late Days!
– After 4 late days ( 100 * 0.6^n) 

CSE 344 - Summer 2017 2



Recap

• What are transactions?
– Why do we need them?

• Maintain ACID properties via schedules
– We focus on the isolation property

– We briefly discussed consistency & durability

– We do not discuss atomicity

• Ensure conflict-serializable schedules with locks

CSE 344 - Summer 2017 3



Implementing a Scheduler

Major differences between database vendors

• Locking Scheduler
– Aka “pessimistic concurrency control”

– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”

– Postgres, Oracle

We discuss only locking in 344

4CSE 344 - Summer 2017



Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock 
before reading/writing that element

• If lock is taken by another transaction, then wait

• The transaction must release the lock(s)

CSE 344 - Summer 2017 5

By using locks, scheduler can ensure conflict-serializability



What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc.
– can be even more fine-grained by having different types of 

locks (allows more txns to run simultaneously)

CSE 344 - Summer 2017 6



Locks in the Abstract

7CSE 344 - Summer 2017



A Non-Serializable Schedule
T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

8CSE 344 - Summer 2017

r1(A); w1(A); r2(A); w2(A);r2(B); w2(B); r1(B); w1(B);r1(A); w1(A); r2(A); w2(A);r2(B); w2(B); r1(B); w1(B);



Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

9CSE 344 - Summer 2017

r1(A); w1(A); r2(A); w2(A);r2(B); w2(B); r1(B); w1(B);r1(A); w1(A); r2(A); w2(A);r2(B); w2(B); r1(B); w1(B);

L (A);r (A);w (A);U (A);L (B)L (A);L1(A);r1(A);w1(A);U1(A);L1(B)L2(A);
r2(A);w2(A);U2(A);L2(B);r2(B);w2(B);U2(B);
r1(B);w1(B);U1(B);



Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B); 

10CSE 344 - Summer 2017Scheduler has ensured a conflict-serializable schedule

L1(A);r1(A);w1(A);U1(A);L1(B)L2(A);
r2(A);w2(A);U2(A);L2(B);r2(B);w2(B);U2(B);
r1(B);w1(B);U1(B);



T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?
CSE 344 - Summer 2017 11

But….
L1(A);r1(A);w1(A);U1(A);L1(B)L2(A);
r2(A);w2(A);U2(A);L2(B);r2(B);w2(B);U2(B);
r1(B);w1(B);U1(B);



Two Phase Locking (2PL)

CSE 344 - Summer 2017 12

In every transaction, all lock requests 
must precede all unlock requests

The 2PL rule:

2PL approach developed by Jim Gray



Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 

Now it is conflict-serializable
13CSE 344 - Summer 2017



Two Phase Locking (2PL)

14

Theorem: 2PL ensures conflict serializability

CSE 344 - Summer 2017



Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

CSE 344 - Summer 2017 15



Two Phase Locking (2PL)

16

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:

CSE 344 - Summer 2017



Two Phase Locking (2PL)

17

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A)    why?

CSE 344 - Summer 2017



Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A) 
L2(A)U2(B) why?

CSE 344 - Summer 2017



Two Phase Locking (2PL)

19

Theorem: 2PL ensures conflict serializability

Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A)
L2(A)U2(B)
U2(B)L3(B)
L3(B)U3(C)
U3(C)L1(C)
L1(C)U1(A) ContradictionCSE 344 - Summer 2017



A New Problem: 
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A) 

L2(A); READ(A)
A := A*2
WRITE(A); 
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B); 

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); 
Commit

Rollback

20CSE 344 - Summer 2017



Strict 2PL

CSE 344 - Summer 2017 21

All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable



Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B); 

ROLLBACK; U1(A),U1(B)

…GRANTED; READ(A)

A := A*2

WRITE(A); 
L2(B); READ(B)
B := B*2

WRITE(B); 

COMMIT; U2(A); U2(B)
22CSE 344 - Summer 2017



Another problem: Deadlocks

• T1 waits for a lock held by T2;

• T2 waits for a lock held by T3;

• T3 waits for . . . .

• . . .

• Tn waits for a lock held by T1

23CSE 344 - Summer 2017

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN



Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

24CSE 344 - Summer 2017

None S X

None

S

X

Lock compatibility matrix:
Lock Request

Lo
ck

 H
el

d



Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

25CSE 344 - Summer 2017

None S X

None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:



SQLite

CSE 344 - Summer 2017 26

None READ
LOCK

RESERVEDRESERVED
LOCK

PENDING
LOCK

EXCLUSIVEEXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit



27

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g. SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g. SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 344 - Summer 2017



Lock Performance

CSE 344 - Summer 2017 28

T
h

ro
u

gh
pu

t (
T

P
S

)

# Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use 
admission control



29

Phantom Problem

• So far we have assumed the database to 
be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the 
phantom problem appears

CSE 344 - Summer 2017



Phantom Problem

Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSE 344 - Summer 2017 30



Phantom Problem

31

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 344 - Summer 2017

Suppose there are two blue products, A1, A2:



Phantom Problem

32

R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)R1(A1),R1(A2),W2(A3),R1(A1),R1(A2),R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

CSE 344 - Summer 2017W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)W2(A3),R1(A1),R1(A2),R1(A1),R1(A2),R1(A3)



33

Phantom Problem

• A “phantom” is a tuple that is 
invisible during part of a transaction execution but 
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 344 - Summer 2017

Exception to serializablity of 
conflict-serializable schedule



Dealing With Phantoms

• Lock the entire table

• Lock the index entry for ‘blue’
– If index is available

• Or use predicate locks 
– A lock on an arbitrary predicate

Dealing with phantoms is expensive !
CSE 344 - Summer 2017 34



Locking & SQL

35CSE 344 - Summer 2017



36

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSE 344 - Summer 2017



1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

37

Possible problems: dirty and inconsistent reads

CSE 344 - Summer 2017



Dirty Reads

T :  WRITE(A) T1:  WRITE(A) 

T1:  ABORT

T2:  READ(A)

CSE 344 - Summer 2017

Write-Read Conflict

38



Inconsistent Read

T :  A := 20;  B := 20;T1:  A := 20;  B := 20;
T1:  WRITE(A) 

T1:  WRITE(B) 
:  READ(B); 

T2:  READ(A);
T2:  READ(B); 

CSE 344 - Summer 2017

Write-Read Conflict

39



2. Isolation Level: Read Committed 

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

40

Unrepeatable reads 
When reading same element twice, 
may get two different values

CSE 344 - Summer 2017



Unrepeatable Read

T1:  WRITE(A)T1:  WRITE(A)

T :  READ(A);T2:  READ(A);

T2:  READ(A);

CSE 344 - Summer 2017

Read-Write Conflict

41



3. Isolation Level: Repeatable Read 

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

42

This is not serializable yet !!!

Why ?

CSE 344 - Summer 2017



4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

43CSE 344 - Summer 2017



Beware!

In commercial DBMSs:

• Default level is often NOT serializable (SQL Server!)

• Default level differs between DBMSs

• Some engines support subset of levels

• Serializable may not be exactly ACID
– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking and 
different isolation levels can lead to different probs

• Bottom line: Read the doc for your DBMS!

CSE 344 - Summer 2017 44



Next two slides: try them on Azure

CSE 344 - Summer 2017 45



Demonstration with SQL Server

Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
waitfor delay '00:01';  -- wait for one minute

Application 2:
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
insert into R values(2); -- blocked waiting on exclusive lock

-- App 2 unblocks and executes insert after app 1 commits/aborts

CSE 344 - Summer 2017 46



Demonstration with SQL Server

Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
waitfor delay '00:01';  -- wait for one minute

Application 2:
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
insert into R values(3); -- gets an exclusive lock on new tuple

-- If app 1 reads now, it blocks because read dirty
-- If app 1 reads after app 2 commits, app 1 sees new value

CSE 344 - Summer 2017 47


