Introduction to Data Management
CSE 344

Lecture 19: More Transactions

CSE 344 - Summer 2017

Announcements

« HWY (final one!) will be released today
— Some Java programming required
— Connecting to SQL Azure
— Due Wednesday, Aug7+ 4. , /O
7 Onee J g

« WQY7 (final one!) released
— Due Monday, Aug-10 /[Aﬁ =

CSE 344 - Summer 2017

Outline

« Serial and Serializable Schedules (18.1)
» Conflict Serializability (18.2)

« Transaction implementation using locks (18.3)

CSE 344 - Summer 2017 3

Review: Transactions

* Problem: An application must perform several
writes and reads to the database, as a unit

« Solution: multiple actions of the application are
bundled into one unit called a Transaction

CSE 344 - Summer 2017 4

Review: Transactions in SQL

BEGIN TRANSACTION
[SQL statements]

COMMIT or

ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN... missing,
then TXN consists
of a single instruction

CSE 344 - Summer 2017

Know your ehemistry

~ transactions: ACID
Atomic

— State shows either all the effects of txn, or none of them
Consistent

— Txn moves from a DBMS state where integrity holds, to
another where integrity holds

* remember integrity constraints?

|Isolated

— Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

Durable

— Once a txn has committed, its effects remain in the
database

CSE 344 - Summer 2017 6

Rollback transactions

 |If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

 The DB returns to the state prior to the
transaction

« Useful for atomicity — ROLLBACK on error.

CSE 344 - Summer 2017

|Isolation: The Problem

Multiple transactions are running concurrently
T, T, ...

h

'}They read/write some common elements
A, Ay, ...

How do we prevent unwanted interference?
The SCHEDULER is responsible for that

CSE 344 - Summer 2017

Schedules

A schedule Is a sequence
of interleaved actions
from all transactions

CSE 344 - Summer 2017

Review: Serial Schedule

* A serial schedule is one in which transactions are
executed one after the other, in some sequential

order Botchh pwivde.

* Review: nothing can go wrong if the system
executes transactions serially (up to what we have
learned so far)

— But DBMS don’t do that because we want better overall
system performance

CSE 344 - Summer 2017 10

A and B are elements
In the database

Exam p|e t and s are variables

/ﬂi Wu/ _ 5 %oume code/
T1 T2
READ(A, 1) READ(A, s)

7 (. Qe
=100 s:=s%2

WRITE(A, t) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 S 1= 8%2
WRITE(B,t) WRITE(B,s)

CSE 344 - Summer 2017 11

/\

_ gb
Example of a (Serial) Schedule
T1 T2
READ(A,)
t := t+100
WRITE(A, 1) AT g0
READ(B, t)
o t = t+100 (=150
c WRITE(B,)
= READ(A,s)
S =82
WRITE(As) A - 20
READ(B,s)
S =82
WRITEBs) [>= 0’

CSE 344 - Summer 2017

12

A- o

- ¢ o
Another Serial Schedule
T1 T2
READ(A,s)
S =82
WRITE(A,s) A - /070
READ(B,s)
O S =82
£ WRITE(B,s) /=140
= READ(A, t)
t :=t+100
WRITE(A,t) A~ 709
READ(B, t)
t :=t+100

WRITEB,t) [#- 200

CSE 344 - Summer 2017 13

Review: Serializable Schedule

A schedule is serializable if it is
equivalent to a serial schedule

CSE 344 - Summer 2017

14

A Serializable Schedule

T1 T2
READ(A, 1)
t := t+100
WRITE(A, 1)
/7

S =82
RITE(A,s)
READ(B, t

t:=1t+100) N (0”‘[/@[5
RITE(B,t
READ(B,s)
This is a serializable schedule. S :=8%2

This is NOT a serial schedule WRITE(B,s)

CSE 344 - Summer 2017 15

A Non-Serializable Schedule

T1 T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
S =82

= (A’S)
READ(B,
S :=8*2
ARITE(B,s)

READ(B, 1)
t := t+100
WRITE(B

CSE 344 - Summer 2017

16

How do We Know if a Schedule
IS Serializable?

Notation:
12 1(A); wy(A); ry(B); wy(B)
T, ry(A); Wo(A); 1y(B); wy(B)

Key ldea: Focus on con(licting operations
/
/’\"aJ ¢ WT\JQS

CSE 344 - Summer 2017 17

Conflicts

* Write-Read — WR
 Read-Write — RW
o Write-Write — WW
 Read-Read?

CSE 344 - Summer 2017

18

Conflict Serializability

Conflicts: (i.e., swapping will change program behavior)

Tho st Gicop 0T 7T oo
Two actions by same transaction T: r(X); w;(Y)

VHA/'I/\/[M /'I'IP OVX’Q’I/ a\/ 74/”9 /l¢/¢7‘(/ 2-/

Two writes by T;, T; to same element wi(X); w;(X)

w;(X); ri(X)
r(X); wi(X)

CSE 344 - Summer 2017 19

Read/write by T, T, to same element

Conflict Serializability

* A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

« Every conflict-serializable schedule is serializable

CSE 344 - Summer 2017 20

Conflict Serializability

Example:

r1(A); Wi(A); ra(A); Wo(A); 11(B); wy(B); ra(B); w,(B)

~~

r1(A);, wi(A); r(B); wy(B); ra(A); Wa(A); ra(B); w,(B)

CSE 344 - Summer 2017

21

Conflict Serializability

Example:

r1(A);, wq(A); ra(A);

W, (A); r4(B);

w,(B); ra(B); w,(B)

~~

r1(A);, wi(A); r(B); wy(B); ra(A); Wa(A); ra(B); w,(B)

CSE 344 - Summe

r2017

22

Conflict Serializability

Example:

r1(A);, wq(A); ra(A);

W, (A); r4(B);

w,(B); ra(B); w,(B)

~~

r1(A);, wi(A);fra(A);

r1(B); (Wo(A);

w,(B); ra(B); w,(B)

~~

r1(A);, wi(A); r(B); wy(B); ra(A); Wa(A); ra(B); w,(B)

CSE 344 - Summe

r2017

23

Conflict Serializability

Example:

r1(A);, wq(A); ra(A);

W, (A); r4(B);

w,(B); ra(B); w,(B)

~~

r1(A);, wi(A);fra(A);

r1(B); (Wo(A);

w,(B); ra(B); w,(B)

< L

r1(A), wq(A); ry(B);

ro(A); [(Wo(A);

w4 (B)f rao(B); w,(B)

-

r1(A);, wi(A); r(B); wy(B); ra(A); Wa(A); ra(B); w,(B)

CSE 344 - Summe

r2017

24

Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T,

* An edge from T; to T, whenever an action in T,
conflicts with, and comes before an action in Tj

 The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 344 - Summer 2017 25

Example 1

&A}nB)(WTﬁ)r3 : W, (B); W3A)(rz)@ﬁ23

——2—A3)

CSE 344 - Summer 2017 26

Example 1

N

ry(A); r1(B); wy(A); r3(A); wq(B); wi(A); ry(B); wy(B)

S

D——2—2 3

This schedule is conflict-serializable

CSE 344 - Summer 2017 27

Example 2

r)(A); r1(B); wy(A); ra(B); r3(A); we(B); wi(A); wy(B)

v @ ©)

CSE 344 - Summer 2017 28

Example 2

— \

ry(A); r4(B); Wo(A); ra(B); r3(A); wi B) W3 (A aV\/’fz

// wue‘/ kv? }‘*/Of“

@ /, S /z

This schedule is NOT conflict-serializable

CSE 344 - Summer 2017 29

Scheduler

« Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

* Also called Concurrency Control Manager

* We discuss next how a scheduler may be
implemented

CSE 344 - Summer 2017

30

Implementing a Scheduler

Major differences between database vendors
* Locking Scheduler

— Aka “pessimistic concurrency control”
— SQLite, SQL Server, DB2
« Multiversion Concurrency Control (MVCC)
— Aka “optimistic concurrency control”
— Postgres, Oracle

We discuss only locking schedulers in 344

CSE 344 - Summer 2017

31

Locking Scheduler

Simple idea:
 Each element has a unique lock

« Each transaction must first acquire the lock
before reading/writing that element

* If the lock is taken by another transaction,
then wait

* The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

 Lock on the entire database
— SQLite

 Lock on individual records
— SQL Server, DB2, etc

CSE 344 - Summer 2017 33

Review: SQLite

« SQLite is very simple
* More info: http://www.sqlite.org/atomiccommit.html

* Lock types
— READ LOCK (to read)
— RESERVED LOCK (to write)
— PENDING LOCK (wants to commit)
— EXCLUSIVE LOCK (to commit)

CSE 344 - Summer 2017 34

SQLite

Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
They all read data from the database file

If the transaction commits without writing
anything, then it simply releases the lock

CSE 344 - Summer 2017 35

SQLite

Step 2: when one transaction wants to write

Acquire a RESERVED LOCK
May coexists with many READ LOCKs

Writer TXN may write; these updates are only
IN main memory; others don't see the updates

Reader TXN continue to read from the file
New readers accepted
No other TXN is allowed a RESERVED LOCK

CSE 344 - Summer 2017 36

SQLite

Step 3: when writer transaction wants to commit,
It needs exclusive lock, which can’t coexists with
read locks

+ Acquire a PENDING LOCK
« May coexists with old READ LOCKSs

 No new READ LOCKS are accepted
 Wait for all read locks to be released

CSE 344 - Summer 2017 37

SQLite

Step 4: when all read locks have been released
* Acquire the EXCLUSIVE LOCK
* Nobody can touch the database now

* All updates are written permanently to the
database file

 Release the lock and COMMIT

CSE 344 - Summer 2017 38

SQLite

begin transaction first write commit requested no more read locks
READ RESERVED PENDING XCLUSIV
LOCK LOCK LOCK LOCK
. Allows new No new onlv if no
commit Read Locks Re2dlockSy Reser\)/ed locks

commit executed

Lecture notes contains a SQLite demo

CSE 344 - Summer 2017 39

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

Does not seem to work in Ubuntu for Window
(looks like a file flush issue)

CSE 344 - Summer 2017 40

Demonstrating Locking in SQLite

T1:

begin transaction;

select * from r;

-- T1 has a READ LOCK
T2:

begin transaction;

select * from r;

-- T2 has a READ LOCK

CSE 344 - Summer 2017

41

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:

update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Summer 2017 42

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

CSE 344 - Summer 2017 43

Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Summer 2017 44

Demonstrating Locking in SQLite

//

/- 77@)’(//“&”1/
T3"
begin transaction;
select * from r;

-- T3 asked for READ LOCK-- DENIED (due to
T1)

T2 C «n V\ﬂ[(131/17\,\/\{71 '/7(
commit; omy ek loks

-- releases the last READ LOCK; T1 can compit

How do anomalies show up In
schedules?

* What could go wrong if we didn’t have
concurrency control:
— Dirty reads (including inconsistent reads)
— Unrepeatable reads
— Lost updates

Many other things can go wrong too

CSE 344 - Summer 2017

46

Dirty Reads

Write-Read Conflict

T,. WRITE(A)
T,: READ(A)

T,: ABORT

CSE 344 - Summer 2017

47

Inconsistent Read

Write-Read Conflict

T, A:=20; B :=20;
T, WRITE(A)

T,: WRITE(B)

T,: READ(A);
T,: READ(B);

CSE 344 - Summer 2017

48

Unrepeatable Read

Read-Write Conflict

T,. READ(A);

T,. WRITE(A)

T,: READ(A);

CSE 344 - Summer 2017

49

Lost Update

Write-Write Conflict

T,: READ(A)

T,: READ(A);
T,:A=A+5

T,;A:=A"13
T,: WRITE(A)

T,: WRITE(A);

Next time: handling anamalies with locks 4,

