
Introduction to Data Management
CSE 344

Lecture 19: More Transactions

CSE 344 - Summer 2017 1

Announcements

• HW7 (final one!) will be released today
– Some Java programming required

– Connecting to SQL Azure

– Due Wednesday, Aug 7

• WQ7 (final one!) released
– Due Monday, Aug 10

CSE 344 - Summer 2017 2

Outline

• Serial and Serializable Schedules (18.1)

• Conflict Serializability (18.2)

• Transaction implementation using locks (18.3)

CSE 344 - Summer 2017 3

4

Review: Transactions

• Problem: An application must perform several
writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called a Transaction

CSE 344 - Summer 2017

Review: Transactions in SQL

CSE 344 - Summer 2017 5

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction

6

Know your chemistry
transactions: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a DBMS state where integrity holds, to

another where integrity holds
• remember integrity constraints?

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSE 344 - Summer 2017

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

• Useful for atomicity – ROLLBACK on error.

CSE 344 - Summer 2017 7

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How do we prevent unwanted interference?

• The SCHEDULER is responsible for that

CSE 344 - Summer 2017 8

Schedules

CSE 344 - Summer 2017 9

A schedule is a sequence
of interleaved actions
from all transactions

Review: Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Review: nothing can go wrong if the system
executes transactions serially (up to what we have
learned so far)
– But DBMS don’t do that because we want better overall

system performance

10CSE 344 - Summer 2017

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

CSE 344 - Summer 2017 11

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - Summer 2017 12

T
im

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Summer 2017 13

T
im

e

Review: Serializable Schedule

CSE 344 - Summer 2017 14

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 344 - Summer 2017 15

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Summer 2017 16

How do We Know if a Schedule
is Serializable?

CSE 344 - Summer 2017 17

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR

• Read-Write – RW

• Write-Write – WW

• Read-Read?

CSE 344 - Summer 2017 18

Conflict Serializability

Conflicts: (i.e., swapping will change program behavior)

r (X); w (Y)ri(X); wi(Y)Two actions by same transaction Ti:

w (X); w (X)wi(X); wj(X)Two writes by Ti, Tj to same element

w (X); r (X)wi(X); rj(X)
Read/write by Ti, Tj to same element

r (X); w (X)ri(X); wj(X)
CSE 344 - Summer 2017 19

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable

CSE 344 - Summer 2017 20

Conflict Serializability

CSE 344 - Summer 2017 21

Example:

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Summer 2017 22

Example:
r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Conflict Serializability

CSE 344 - Summer 2017 23

Example:

r (A); w (A); r (A); r (B); w (A); w (B); r (B); w (B)r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Conflict Serializability

CSE 344 - Summer 2017 24

Example:

r (A); w (A); r (B); r (A); w (A); w (B); r (B); w (B)r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

r (A); w (A); r (A); r (B); w (A); w (B); r (B); w (B)r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 344 - Summer 2017 25

Example 1

CSE 344 - Summer 2017 26

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 344 - Summer 2017 27

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B) r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 344 - Summer 2017 28

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 344 - Summer 2017 29

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

• Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 344 - Summer 2017 30

Implementing a Scheduler

Major differences between database vendors

• Locking Scheduler
– Aka “pessimistic concurrency control”

– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”

– Postgres, Oracle

We discuss only locking schedulers in 344

31CSE 344 - Summer 2017

Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock
before reading/writing that element

• If the lock is taken by another transaction,
then wait

• The transaction must release the lock(s)

CSE 344 - Summer 2017 32By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 344 - Summer 2017 33

Review: SQLite

• SQLite is very simple

• More info: http://www.sqlite.org/atomiccommit.html

• Lock types
– READ LOCK (to read)

– RESERVED LOCK (to write)

– PENDING LOCK (wants to commit)

– EXCLUSIVE LOCK (to commit)

CSE 344 - Summer 2017 34

SQLite

Step 1: when a transaction begins

• Acquire a READ LOCK (aka "SHARED" lock)

• All these transactions may read happily

• They all read data from the database file

• If the transaction commits without writing
anything, then it simply releases the lock

CSE 344 - Summer 2017 35

SQLite

Step 2: when one transaction wants to write

• Acquire a RESERVED LOCK

• May coexists with many READ LOCKs

• Writer TXN may write; these updates are only
in main memory; others don't see the updates

• Reader TXN continue to read from the file

• New readers accepted

• No other TXN is allowed a RESERVED LOCK

CSE 344 - Summer 2017 36

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks

• Acquire a PENDING LOCK

• May coexists with old READ LOCKs

• No new READ LOCKS are accepted

• Wait for all read locks to be released

CSE 344 - Summer 2017 37

Why not write
to disk right now?

SQLite

Step 4: when all read locks have been released

• Acquire the EXCLUSIVE LOCK

• Nobody can touch the database now

• All updates are written permanently to the
database file

• Release the lock and COMMIT

CSE 344 - Summer 2017 38

SQLite

CSE 344 - Summer 2017 39

None READ
LOCK

RESERVEDRESERVED
LOCK

PENDING
LOCK

EXCLUSIVEEXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

Lecture notes contains a SQLite demo

Allows new
Read Locks

No new
Read Locks

Only if no
Reserved locks

SQLite Demo

create table r(a int, b int);

insert into r values (1,10);

insert into r values (2,20);

insert into r values (3,30);

CSE 344 - Summer 2017 40

Does not seem to work in Ubuntu for Window
(looks like a file flush issue)

Demonstrating Locking in SQLite

T1:

begin transaction;

select * from r;

-- T1 has a READ LOCK

T2:

begin transaction;

select * from r;

-- T2 has a READ LOCK

CSE 344 - Summer 2017 41

Demonstrating Locking in SQLite

T1:

update r set b=11 where a=1;

-- T1 has a RESERVED LOCK

T2:

update r set b=21 where a=2;

-- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Summer 2017 42

Demonstrating Locking in SQLite

T3:

begin transaction;

select * from r;

commit;

-- everything works fine, could obtain READ LOCK

CSE 344 - Summer 2017 43

Demonstrating Locking in SQLite

T1:

commit;

-- SQL error: database is locked

-- T1 asked for PENDING LOCK -- GRANTED

-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Summer 2017 44

Demonstrating Locking in SQLite

T3':

begin transaction;

select * from r;

-- T3 asked for READ LOCK-- DENIED (due to
T1)

T2:

commit;

-- releases the last READ LOCK; T1 can commit45

How do anomalies show up in
schedules?

• What could go wrong if we didn’t have
concurrency control:
– Dirty reads (including inconsistent reads)

– Unrepeatable reads

– Lost updates

Many other things can go wrong too

CSE 344 - Summer 2017 46

Dirty Reads

T : WRITE(A) T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSE 344 - Summer 2017

Write-Read Conflict

47

Inconsistent Read

T : A := 20; B := 20;T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)
: READ(B);

T2: READ(A);
T2: READ(B);

CSE 344 - Summer 2017

Write-Read Conflict

48

Unrepeatable Read

T1: WRITE(A)T1: WRITE(A)

T : READ(A);T2: READ(A);

T2: READ(A);

CSE 344 - Summer 2017

Read-Write Conflict

49

Lost Update

T : READ(A)

: WRITE(A)

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

50Next time: handling anomalies with locksCSE 344 - Summer 2017

