
Introduction to Data Management
CSE 344

Lecture 20: Introduction to Transactions

CSE 344 - Summer 2017 1

Announcements

• WQ6 due tonight.

• HW6 due tomorrow.

• WQ 7 due next Monday

• HW7 (transactions) will be out Wednesday
– Due next Thursday (Aug 10)

CSE 344 - Summer 2017 2

3

Schema Refinements
= Normal Forms

• 1st Normal Form = all tables are flat

• 2nd Normal Form = obsolete

• Boyce Codd Normal Form = no bad FDs

• 3rd and 4th Normal Form = see book
– BCNF is lossless but can cause loss of ability to check some

FDs (see book 3.4.4)

– 3NF fixes that (is lossless and dependency-preserving), but
some tables might not be in BCNF – i.e., they may have
redundancy anomalies

– 4NF deals with multi-valued dependencies (see book 3.6)

CSE 344 - Summer 2017

Data Management Pipeline

Conceptual Schema

Physical Schema

Schema
designer

Database
administrator

Application
programmer

product

name

price

4

Transactions
• We use database transactions everyday

– Bank $$$ transfers

– Online shopping

– Signing up for classes

• For this class, a transaction is a series of DB
queries
– Read / Write / Update / Delete / Insert

– Unit of work issued by a user that is independent
from others

CSE 344 - Summer 2017 5

What’s the big deal?

CSE 344 - Summer 2017 6

Demo
(see lec20-transactions-intro.sql)

Challenges

• Want to execute many apps concurrently
– All these apps read and write data to the same DB

• Simple solution: only serve one app at a time
– What’s the problem?

• Want: multiple operations to be executed
atomically over the same DBMS

CSE 344 - Summer 2017 7

What can go wrong?

• Manager: balance budgets among projects
– Remove $10k from project A

– Add $7k to project B

– Add $3k to project C

• CEO: check company’s total balance
– SELECT SUM(money) FROM budget;

• This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 344 - Summer 2017 8

What can go wrong?
• App 1:

SELECT inventory FROM products WHERE pid = 1

• App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

• App 1:
SELECT inventory * price FROM products
WHERE pid = 1

• This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 344 - Summer 2017 9

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200

• App 1:
– Set Account 1 = $200

– Set Account 2 = $0

• App 2:
– Set Account 2 = $200

– Set Account 1 = $0

• At the end:
– Total = $200

• App 1: Set Account 1 = $200

• App 2: Set Account 2 = $200

• App 1: Set Account 2 = $0

• App 2: Set Account 1 = $0

• At the end:
– Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 344 - Summer 2017 10

What can go wrong?

• Buying tickets to a Sounders game:
– Fill up form with your mailing address

– Put in debit card number

– Click submit

– Screen shows money deducted from your account

– [Your browser crashes]

CSE 344 - Summer 2017 11

Lesson:

Changes to the database
should be ALL or NOTHING

Transactions

• Collection of statements that are executed
atomically (logically speaking)

12

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction
CSE 344 - Summer 2017

More Transactions Demo

CSE 344 - Summer 2017 13

Serial execution

• Definition: A SERIAL execution of
transactions is one where each transaction is
executed one after another.

• Fact: Nothing can go wrong if the DB
executes transactions serially
– (Up to everything that we have learned so far)

• Definition: A SERIALIZABLE execution of
transactions is one that is equivalent to a
serial execution

CSE 344 - Summer 2017 14

15

What we want: ACID
• Atomic

– State shows either all the effects of txn, or none of them
• Consistent

– Txn moves from a DBMS state where integrity holds, to
another where integrity holds

• remember integrity constraints?

• Isolated
– Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

CSE 344 - Summer 2017

Atomic
• Definition: A transaction is ATOMIC if all

its updates must happen or not at all.

• Example: move $100 from A to B
– UPDATE accounts SET bal = bal – 100

WHERE acct = A;

– UPDATE accounts SET bal = bal + 100
WHERE acct = B;

– BEGIN TRANSACTION;
UPDATE accounts SET bal = bal – 100
WHERE acct = A;
UPDATE accounts SET bal = bal + 100
WHERE acct = B;
COMMIT; 16CSE 344 - Summer 2017

Isolated

• Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

CSE 344 - Summer 2017 17

Consistent
• Recall: integrity constraints govern how values in

tables are related to each other
– Can be enforced by the DBMS, or ensured by the app

• How consistency is achieved by the app:
– App programmer ensures that txns only takes a

consistent DB state to another consistent state

– DB makes sure that txns are executed atomically

• Can defer checking the validity of constraints
until the end of a transaction

CSE 344 - Summer 2017 18

Durable

• A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

• How?
– By writing to disk!

– More in 444

CSE 344 - Summer 2017 19

Rollback transactions

• If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

• The DB returns to the state prior to the
transaction

• What are examples of such program states?

CSE 344 - Summer 2017 20

21

ACID
• Atomic
• Consistent
• Isolated
• Durable

• Enjoy this in HW7!

• Again: by default each statement is its own txn
– Unless auto-commit is off then each statement starts a

new txn

CSE 344 - Summer 2017

Implementation of transactions

• sqlite: single lock for the entire DB
– http://www.sqlite.org/atomiccommit.html

– Not true for SQL Server, DB2, etc

CSE 344 - Summer 2017 22

SQLite Transactions
• Step 1: When txn starts: acquires a read lock

(aka shared lock) (recall CSE 332?)

• Step 2: When txn writes: acquire a reserved
lock

• Step 3: When txn commits:
– First acquire a pending lock: no new read locks

allowed

– Wait until all current read locks are released

– Acquire an exclusive lock

– Make updates to DB on disk

– Commit, release all locks

23CSE 344 - Summer 2017

