
Database Systems
CSE 414

Lecture 16: Design Theory

(Ch. 3.1, 3.3-4)

CSE 344 - Summer 2017 1



Announcements

• HW5 - Was on NoSQL (not doing)

• HW6 - Out tonight  

• Midterm Will Use Gradescope
– Will be out by tonight.

– Check you UW Email address for Gradescope link

– Have until Friday to file re-grades

CSE 344 - Summer 2017 2



Database Design

What it is:

• Starting from scratch, design the database schema: 
relation, attributes, keys, foreign keys, constraints etc

Why it’s hard:

• The database will be in operation for years.

• Updating the schema in production is very hard:
– schema change modifications are expensive (why?)

– making the change without introducing any bugs is hard
• this part is, by far, the most important consideration in practice

CSE 344 - Summer 2017 3



Database Design Process
companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema

Physical storage details

4

Before
Midterm

Last Class



Entity / Relationship Diagrams

• Entity set = a class
– An entity = an object

• Attribute

• Relationship

CSE 344 - Summer 2017 5

Product

city

makesmakes



Entity Set to Relation

Product

prod-ID category

price

Product(prod-ID, category, price)

prod-ID category price

Gizmo55 Camera 99.99

Pokemn19 Toy 29.99 6



Multiplicity of E/R Relations

• one-one:

• many-one

• many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

CSE 344 - Summer 2017 7



N-N Relationships to Relations

Orders

prod-ID cust-ID

date

ShipmentShipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date)
Shipment(prod-ID,cust-ID, name, date)
Shipping-Co(name, address)

date

prod-ID cust-ID name date

Gizmo55 Joe12 UPS 4/10/2011

Gizmo55 Joe12 FEDEX 4/9/2011
8



N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

ShipmentShipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, ship_co, ship_date) 
Shipping-Co(name, address)

date

9Note: many-one relationship becomes FK not relation



What about 1 - 1 relationship

Orders

prod-ID cust-ID

date

ShipmentShipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, ship_co, ship_date) 
Shipping-Co(name, address)

date

10Note: one-one relationship make FK part of child PK

trevo
Cross-Out

trevo
Typewriter
one-one relationship need to have a UNIQUE constraint for each key.



Multi-way Relationships to 
Relations

PurchasePurchase

Product

Person

Storeprod IDprod-ID price

ssnname

name addressaddress

11

Purchase(prod-ID, ssn, name) 

CSE 344 - Summer 2017



What about now?

PurchasePurchase

Product

Person

Storeprod IDprod-ID price

ssnname

name addressaddress

12

Purchase(prod-ID, ssn, name) 

CSE 344 - Summer 2017

Does Not Work. Why?



What about now?

PurchasePurchase

Product

Person

Storeprod IDprod-ID price

ssnname

name addressaddress

13

Purchase(prod-ID, ssn, name)
Table Constraints:
UNIQUE (prod-ID,ssn)
UNIQUE (ssn,name) 

CSE 344 - Summer 2017



What makes good schemas?

CSE 344 - Summer 2017 14



Integrity Constraints Motivation

• ICs help prevent entry of incorrect information

• How? DBMS enforces integrity constraints
– Allows only legal database instances (i.e., those that satisfy 

all constraints) to exist

– Ensures that all necessary checks are always performed and 
avoids duplicating the verification logic in each application

CSE 344 - Summer 2017 15

An integrity constraint is a condition specified on a 
database schema that restricts the data that can be 
stored in an instance of the database.

Most important
issue in practice



Constraints in E/R Diagrams

Finding constraints is part of the modeling process. 
Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints:  can have only one genetic father

Referential integrity constraints: if you work for a company, it
must exist in the database.

Other constraints:  peoples’ ages are between 0 and 150.
some values should not be NULL

CSE 344 - Summer 2017 16



17

Constraints in SQL

Constraints in SQL:

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

• The more complex the constraint, the harder it is to 
check and to enforce…
– (Still, performance is secondary to correctness.)

simplest

Most
complex

CSE 344 - Summer 2017



Other Keys

CSE 344 - Summer 2017 18

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE



Key Constraints

CSE 344 - Summer 2017 19

CREATE TABLE Purchase (
prodName CHAR(30) REFERENCES Product(name),
date DATETIME)

Same for PRIMARY KEY and UNIQUE

CREATE TABLE Purchase (
prodName CHAR(30),

date DATETIME
FOREIGN KEY REFERENCES Product(name) )

Attribute Constraint

Tuple / Table Constraint Second form need for
multiple keys



Maintaining Referential Integrity
CREATE TABLE Purchase (

prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category) 

REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL   )

Name Category

Gizmo Gadget

Snap Camera

EasyShoot Camera

ProdName Category

Gizmo Gadget

Snap Camera

OneClick Camera

Product Purchase

20CSE 344 - Summer 2017



Constraints on 
Attributes and Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

CSE 344 - Summer 2017 21

Checked when 
attribute 
changes

Checked when 
tuple/row
changes



Constraints on 
Attributes and Tuples

CSE 344 - Summer 2017 22

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30) NOT NULL,
category VARCHAR(20)

CHECK (category in (‘toy’,’gadget’,’apparel’)),
price INT CHECK (price > 0),
PRIMARY KEY (productID),
CHECK price < 10 and category = ‘toy’

)

Attribute Constraint

Table Constraint. 
Why?



Referential Integrity Constraints

CompanyProduct makes

CompanyProduct makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.
CSE 344 - Summer 2017 23

FK

NOT NULL FK



Other Constraints

CompanyProduct makes
<100

CSE 344 - Summer 2017 24

Q: What does this mean ?
A: A Company entity cannot be connected
by relationship to more than 99 Product entities

Try at home: How would you implement this?



25

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name
FROM Product)),

date DATETIME NOT NULL)

CSE 344 - Summer 2017

Constraints on 
Attributes and Tuples

What is the 
difference from
Foreign Key?

What does this constraint do? 



26

General Assertions

CREATE ASSERTION myAssert CHECK
(NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200) )

CSE 344 - Summer 2017

But most DBMSs do not implement assertions
Because it is hard to support them efficiently
Instead, they provide triggers



What makes good schemas?

27CSE 344 - Summer 2017



28

Relational Schema Design

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city
What is the primary key?

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
CSE 344 - Summer 2017



29

Relational Schema Design

Anomalies:
• Redundancy = repeat data
• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield
These can cause bugs!

Worry most about later two.

CSE 344 - Summer 2017



30

Relation Decomposition
Break the relation into two:

Name SSN City

Fred 123-45-6789 Seattle

Joe 987-65-4321 Westfield

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121Anomalies have gone:
• No more repeated data
• Easy to move Fred to “Bellevue” (how ?)
• Easy to delete all Joe’s phone numbers (how ?)

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield



31

Relational Schema Design
(or Logical Design)

How do we do this systematically?

• Start with some relational schema 

• Find out its functional dependencies (FDs)

• Use FDs to normalize the relational schema

CSE 344 - Summer 2017



32

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes 

then they must also agree on the attributes

Formally:  

1 2 n 1 2 mA1, A2, …, An B1, B2, …, Bm

1 2 nA1, A2, …, An

1 2 mB1, B2, …, Bm

A1…An determines B1..Bm

CSE 344 - Summer 2017



33

Functional Dependencies (FDs)

Definition FD A1, ..., Am  B1, ..., Bn holds in R if:

for every pair of tuples t, t’  R,

(t.A1 = t’.A1 and ... t.Am = t’.Am t.B1 = t’.B1 and ... t.Bn = t’.Bn )

A1 ... Am B1 ... Bn

if t, t’ agree here then t, t’ agree here

t

t’

R

Never have equal As

but different Bs!



34

Example

EmpID  Name, Phone, Position

Position  Phone

but  not   Phone   Position

An FD holds, or does not hold on an instance:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer



35

Example

Position  Phone

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876     Salesrep

E1111 Smith 9876     Salesrep

E9999 Mary 1234 Lawyer

CSE 344 - Summer 2017



36

Example

But not Phone   Position

EmpID Name Phone Position

E0045 Smith 1234     Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234     Lawyer

CSE 344 - Summer 2017



37

Example

Do all the FDs hold on this instance?

name  color
category  department
color, category  price

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 99

CSE 344 - Summer 2017



38

Example

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 49

Gizmo Stationary Green Office-supp. 59

What about this one ?

name  color
category  department
color, category  price

CSE 344 - Summer 2017



Terminology

• FD holds or does not hold on an instance

• If we can be sure that every instance of R will 
be one in which a given FD is true, then we 
say that R satisfies the FD

• If we say that R satisfies an FD F, we are 
stating a constraint on R (part of schema)

39CSE 344 - Summer 2017



40

Example

These FD’s all hold on given instance:
• Name, SSN -> City
• SSN -> Name, City
• PhoneNumber -> City
• SSN -> City
• City -> Name

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

Joe 321-54-9876 908-321-1234 Westfield

R satisfies only one.  
Need to reason about what the data means.



41

An Interesting Observation

If all these FDs are true:
name  color
category  department
color, category  price

Then this FD also holds: name, category  price

If we find out from application domain that a relation satisfies some FDs, 
it doesn’t mean that we found all the FDs that it satisfies! 
There could be more FDs implied by the ones we have.

CSE 344 - Summer 2017



42

Closure of a set of Attributes

Given a set of attributes  A1, …, An

The closure, {A1, …, An}+ = the set of attributes B
s.t. A1, …, An  B

Example:

Closures:
name+ =  {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}

1. name  color
2. category  department
3. color, category  price

CSE 344 - Summer 2017



43

Closure Algorithm

X={A1, …, An}.

Repeat until X doesn’t change  do:
if B1, …, Bn C is a FD and

B1, …, Bn are all in X
then add C to X.

{name, category}+ = 
{                                                                    }

Example:

name, category, color, department, price

Hence: name, category  color, department, price

1. name  color
2. category  department
3. color, category  price

CSE 344 - Summer 2017



44

Example

Compute {A,B}+ X = {A, B,                             }

Compute {A, F}+ X = {A, F,                             }

R(A,B,C,D,E,F)

In class:

A, B   C
A, D   E
B        D
A,  F   B

CSE 344 - Summer 2017



45

Example

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F,                             }

R(A,B,C,D,E,F)

In class:

A, B   C
A, D   E
B        D
A,  F   B

CSE 344 - Summer 2017



46

Example

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, B, C, D, E }

R(A,B,C,D,E,F)

In class:

CSE 344 - Summer 2017

A, B   C
A, D   E
B        D
A,  F   B

What is a key of R?



Practice at Home

A, B   C
A, D   B

B        D

Find all FD’s implied by:

47CSE 344 - Summer 2017



Practice at Home

A, B   C
A, D   B

B        D

Step 1: Compute X+, for every X:
A+ = A,   B+ = BD,   C+ = C,   D+ = D

AB+ =ABCD, AC+=AC, AD+=ABCD,
BC+=BCD,  BD+=BD,  CD+=CD

ABC+ = ABD+ = ACD+ = ABCD (no need to compute – why?)

BCD+ = BCD,    ABCD+ = ABCD

Step 2: Enumerate all FD’s X  Y, s.t. Y  X+ and XY = :

AB  CD, ADBC,  ABC  D, ABD  C, ACD  B

Find all FD’s implied by:

48



49

Keys

• A superkey is a set of attributes A1, ..., An s.t. for 
any other attribute B, we have A1, ..., An B

• A key is a minimal superkey
– superkey and for which no subset is a superkey

CSE 344 - Summer 2017



50

Computing (Super)Keys

• For all sets X, compute X+

• If X+ = [all attributes], then X is a superkey

• Try only the minimal X’s to get the key

CSE 344 - Summer 2017



51

Example

Product(name, price, category, color)

What is the key?

{name, category} +  = { name, category, price, color }

Hence {name, category} is a (super)key

CSE 344 - Summer 2017

name, category  price
category  color



52

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD’s s.t. there are two or more keys

ABC
BCA

ABC
BACor

what are the keys here ?

A  B
B  C
C  A

or

CSE 344 - Summer 2017



53

Eliminating Anomalies

Main idea:

• X  A is OK if X is a (super)key

• X  A is not OK otherwise
– Need to decompose the table, but how?

CSE 344 - Summer 2017

Boyce-Codd Normal Form


