Introduction to Data Management
CSE 344

Lecture 14: Datalog (cont.)
(Ch 5.3-5.4)

CSE 344 - Summer 2017 1

Announcements

HW3 was due yesterday.

HW4 will be up today. Due next Tuesday.
— No coding, Datalog and RC on paper.

WQ4 is due next Monday

— it will be useful review for the midterm
— finish it early if you have time

Midterm on Friday, July 21h, in class...

— All the web quizes are open if that helps you study
CSE 344 - Summer 2017

Announcements
« Change in Syllabus

HW 30 30

Web Quiz 15 15
Participation) 3

Midterm 20 25

Final 30 25

Final will be 1h and similar format to midterm. Focus on second half of class

CSE 344 - Summer 2017

UW DB News

4 University of Washington Database Group (Follow)

Jul 18 - 6 min read

Introducing Cosette

Today we are thrilled to announce our official 1.0 release of Cosette, a SQL
solver for automatically checking semantic equivalences of SQL queries. With
Cosette, one can easily verify the correctness of SQL rewrite rules, find
errors in buggy SQL rewrites, building auto-graders for SQL assignments,

developing SQL optimizers, busting “fake SQLs,” etc.

https://medium.com/@uwdb/introducing-cosette-527898504bd6

CSE 344 - Summer 2017

Midterm

Content

— Lectures 1 through 13 (Monday)
- HW 1-3, WQ 14

Closed book. No computers, phones, watches, etc.!

Can bring one letter-sized piece of paper with notes, but...
— test will not be about memorization

— formulas provided for join algorithms & selectivity

— can ask me during test about anything you could look up

Similar in format & content to CSE 344 17wi midterm
— Previous midterms on course webpage

CSE 344 - Summer 2017 5

Midterm Concept Review |

 relational data model
— set semantics vs bag semantics
— primary & secondary keys
— foreign keys
— schemas

« SQL
— CREATE TABLE
— SELECT-FROM-WHERE (SFW)
— joins: inner vs outer, natural
— group by & aggregation
— ordering

— CREATE INDEX
CSE 344 - Summer 2017

Midterm Concept Review ||

 relational queries

— languages for writing them:
« standard relational algebra
« datalog (even without recursion)
« SQL (even without grouping / aggregation)

— monotone queries are a proper subset
— SFW queries (i.e., w/out subqueries) are monotone

» Given an English problem statement you should be able to
write a query in:

— Relational Algebra , Relational Calculus
— Datalog , SQL

CSE 344 - Summer 2017 7

Midterm Concept Review Il

» types of indexes

— B+ tree vs hash
* hash indexes use at most 2 disk accesses
« B+ tree can be used for < predicates
« B+ tree index on (X,Y) also allows searching for X=a matches

— clustered vs non-clustered
 selectivity above 1-2% => not helped by non-clustered indexes

» cost-based query optimization

— consider choices over logical and physical query plans
« most important choice in latter is choice of join algoirthm
» those include nested loop, sorted merge, hash, and indexed joins

— primary goal of the optimizer is to avoid really bad plans

CSE 344 - Summer 2017

Today

* More Datalog
« Midterm Review

CSE 344 - Summer 2017

What is Datalog?

* Another query language for relational model
— Simple and elegant
— Initially designed for recursive queries

— Some companies use datalog for data analytics
* e.g. LogicBlox

— Increased interest due to recursive analytics

* We discuss only recursion-free or non-
recursive datalog and add negation

CSE 344 - Summer 2017

10

Why Do We Learn Datalog?

« Datalog can be translated to SQL

— Helps to express complex queries
* Increase in datalog interest due to recursive analytics

* A query language that is closest to mathematical logic
— Good language to reason about query properties
— Can show that:
1. Non-recursive datalog & RA have equivalent power
2. Recursive datalog is strictly more powerful than RA
3. Extended RA & SQL92 is strictly more powerful than datalog

CSE 344 - Summer 2017 11

Datalog vs Relational Algebra

* Every expression in standard relational algebra can
be expressed as a Datalog query

« But operations in the extended relational algebra
(grouping, aggregation, and sorting) have no
corresponding features in the version of datalog that
we discussed today

« Similarly, datalog can express recursion, which
relational algebra cannot

CSE 344 - Summer 2017 12

Datalog vs Relational Algebra

grouping &
aggregation

L~

/ standard RA

extended
RA

datalog + neg

datalog + neg
+ recursion

CSE 344 - Summer 2017 13

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog with negation

Find all actors who @acted in 1994.

This is wrong,.
Why?

A(X) :- Actor(x,_,) Cast(x,m) Movie(m, ,1994)

L

f)g% Mﬂll/&).’: A(X/-/_) (uvf(x/;«ﬂ)/\/low(hﬂ/_;)

= 199¢

A(X) :- Actor(x, ,), not nonAns(x)

nonAns(x) :- Actor(x, ,) Cast(x,m) Movie(m, ,y),y!=1994

CSE 344 - Summer 2017

14

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all of Joe's friends who do not have any
friends except for Joe:

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- Friend(y,x), y = ‘Joe’
A(x) :- JoeFriends(x), not NonAns(x)

CSE 344 - Summer 2017

15

Datalog Summary

 facts (extensional relations - EDBs) and
rules (intensional relations - IDBs)

— rules can use relations, arithmetic, union, intersect, ...

« As with SQL, existential quantifiers are easier
— use negation to handle universal

CSE 344 - Summer 2017 16

Using what we have learned
How to write a complex SQL query:
 Writeitin RC
« Translate RC to datalog
« Translate datalog to SQL

Take shortcuts when you know what you're doing

CSE 344 - Summer 2017 17

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that

they frequent all bars that serve it

Q(x) =

Jy. Likes(x, y)AVz.(Serves(z,y) = Frequents(x,z))

CSE 344 - Summer 2017

18

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

P = Q same as
Q(x) = y. Likes(x, y)Avz.(Serves(z,y) = Frequents(x,z)) "Pva

vx P(x) same as
~3x 7P(x)

Step 1: Replace V with 3 using de Morgan’s Laws

—("PvQ) same as

Q(x) = 3y. Likes(x, y)A ~3z.(Serves(z,y) A “Frequents(xz)) o o

CSE 344 - Summer 2017 19

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

P = Q same as
Q(x) = y. Likes(x, y)Avz.(Serves(z,y) = Frequents(x,z)) "Pva

vx P(x) same as

13X 7P(x)
Step 1: Replace V with 3 using de Morgan’s Laws :

—(7PvQ) same as
PA - Q

Q(x) = 3y. Likes(x, y)A ~3z.(Serves(z,y) A “Frequents(x,z))

Step 2: Make sure the query is domain independent
Q(x) = 3y. Likes(x, y) A 73z.(Likes(x,y)AServes(z,y)A"Frequents(x,z))

CSE 344 - Summer 2017 20

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

Q(x) = 3y. Likes(x, y) A~ 3z.(Likes(x,y)AServes(z,y)AFrequents(x,z))

\ J
Y

H(X,y)

Step 3: Create a datalog rule for each subexpression;
(shortcut: only for “important” subexpressions)

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

CSE 344 - Summer 2017 21

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)

Q(x) W

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L |

WHERE not exists
(SELECT * FROM Likes L2, Serves S

WHERE)

CSE 344 - Summer 2017

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

H(x,y) :- Likes(x,y), Qrves (z,y), not Frequents(x,z) >
Q(x) - lees(x y), not H(x,y)

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists 7)
(SELECT * FROM Likes L2, Serves

WHERE L2.drinker=L.drinkep and L2.beer=L.beer
and L2.beer=S.beer

and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L2.drinker
and F.bar=S.bar))

23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog™ to SQL

H(x,y) - i=Heeabey) Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Serves S
WHERE L.beer=S.beer
and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L.drinker
and F.bar=S.bar))

CSE 344 - Summer 2017 24

Summary: all these
formalisms are equivalent!

* \We have seen these translations:
— RA - datalog™
— RC - datalog~

* Practice at home, and read Query Language

Primer:

— Nonrecursive datalog™ - RA
— RA=>RC

AV
* Summary: AT 2

— RA, RC, and non-recursive datalog— can express the same
class of queries, called Relational Queries

CSE 344 - Summer 2017

25

Query Optimizer Summary

* Input: A logical query plan
* Output: A good physical query plan
* Basic query optimization algorithm

— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
» Compute number of I/Os
« Optionally take into account other resources

— Choose plan with lowest cost
— This is called cost-based optimization

CSE 344 - Summer 2017

26

N

Cost of Join Algorlthms

» Nested Loop V() = L
~B(R) + BRB(S) / 540) +7T &)

(o]
» Nested Loop (W|th index) (7;{/(/"”5”
— If index on S is clustered: B(R) + T(R)B(S)/V(S,A)

— If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)

* Hash Join
- B(R) + B(S)
— uses more disk space when B(R) > M

CSE 344 - Summer 2017 27

Review: Physical Query

We only care about Disk /O operations

Supplier (sid, shame ,scity, sstate) SELECT sname
FROM Supplier x, Supply y

Supply (pno, sid, quanty) WHERE x.sid = y.sid
and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’

V(Supplier,scity) =20 = 11
V(Supplier,state) = 10
V(Supply,pno) = 2,500

T(Supplier) = 1000 B(Supplier) = 100
T(Supply) = 10,000 B(Supply) = 100

CSE 344 - Summer 2017 28

11

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Naive Plan

Trsname(Gscity=‘SeattIe’ and sstate="WA' and pno=2(8upp|ier > Supply)
(On the fly) T rame

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid (On the fly)
and y.pno = 2 G

and x.scity = ‘Seattle’ scity="Seattle’ and sstate="WA' and pno=2

and x.sstate = ‘WA’

(Nested loop)]

sid = sid
| //////// \\\aﬁkiscan)
(Flle Scarg)SE 344 - EL!rL]emr:ar 2017 Supgly

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 @
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10

V(Supply,pno) = 2,500

Physical Query: Naive Plan

(On the fly) ﬁ sname Selection and project on-the-fly
—> No additional cost.
(On the fly) (IE{

Gscity=‘SeattI "and sstate="WA' and pno=2

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)

(Nested loop) - =100 + 100 * 100
sid = sid =10,100 I/Os
SELECT sname
FROM Supplier x, Supply y
lier WHERE x.sid = y.sid
SUDp © SuPpIy and y.pno = 2
(Flle Scan) (Fl|e Scan) and x.scity = ‘Seattle’
CSE 344 - Summer 2017 and x.sstate = ‘WA’

11

T(Supplier) = 1000 B(Supplier) = 100 [0 f/ﬂ V(Supplier,scity) = 20 M

T(Supply) = 10,000 B(Supply) = 100 (0 (/ V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Optimized

ri b{&l
4.(Onthefly) T Totalcost trfe "7 s

sname (step 1)//_/_/\/_\

100 + 100 1/20 * 1/10 ~= 10¢}

(step 2) P C/*{ﬂo\(?m ru
3. (Sort-merge join) =< 100 + 100 1/2500 ~= 100 (/s
sid = sid (step3)2 (| +()
(Scan (step 4) 0
erte to T1) / Vﬁfﬁm{z Total cost = 204 1/Os
smty- Seattle’ and sstate="WA’ pno =9

‘ SELECT sname

Supp“er Supply FROM Supplier x, Supply vy
Flle scan . WHERE x.sid = y.sid
() (File scan) ot yrong 25

CSE 344 - S 2017 and x.scity = ‘Seattle’
oHmmer and x.sstate = ‘WA’

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Using Indexes

(Onthefly) 4.

11

sname Total cost
ﬁ(V4l) =1 (or2) (step 1.)
(On the fly) PRIV asten2)
3. Oscity="Seattle’ and sstate="WA + 0 (step 3.)
+ 0 (step 4.)

‘ Total cost = 5 1/0Os (or 6)
2 = (Index nested loop)

L/)\ G
: 10000*1/250 r A SELECT sname
(USG hash Index@ v FROM Supplier x, Supply y

1.0 V4 Bfock N\ vt (77| WHERE x.sid = y.sid

pno=2 / [0 and y.pno = 2
Y and x.scity = ‘Seattle’
Supply Supp”er and x.sstate = ‘WA’
(Index on pno) (Index on sid)

Assume: clustered Clustering does not matter 32

