
1

Lecture 14: Datalog (cont.)

(Ch 5.3–5.4)

CSE 344 - Summer 2017

Introduction to Data Management
CSE 344

Announcements

• HW3 was due yesterday.

• HW4 will be up today. Due next Tuesday.
– No coding, Datalog and RC on paper.

• WQ4 is due next Monday
– it will be useful review for the midterm

– finish it early if you have time

• Midterm on Friday, July 21h, in class…
– All the web quizes are open if that helps you study

CSE 344 - Summer 2017 2

Announcements
• Change in Syllabus

CSE 344 - Summer 2017 3

Old New

HW 30 30

Web Quiz 15 15

Participation 5 5

Midterm 20 25

Final 30 25

Final will be 1h and similar format to midterm. Focus on second half of class

UW DB News

https://medium.com/@uwdb/introducing-cosette-527898504bd6

CSE 344 - Summer 2017 4

Midterm
• Content

– Lectures 1 through 13 (Monday)

– HW 1–3, WQ 1–4

• Closed book. No computers, phones, watches, etc.!

• Can bring one letter-sized piece of paper with notes, but…
– test will not be about memorization

– formulas provided for join algorithms & selectivity

– can ask me during test about anything you could look up

• Similar in format & content to CSE 344 17wi midterm
– Previous midterms on course webpage

5CSE 344 - Summer 2017

Midterm Concept Review I
• relational data model

– set semantics vs bag semantics

– primary & secondary keys

– foreign keys

– schemas

• SQL
– CREATE TABLE

– SELECT-FROM-WHERE (SFW)

– joins: inner vs outer, natural

– group by & aggregation

– ordering

– CREATE INDEX
CSE 344 - Summer 2017 6

Midterm Concept Review II
• relational queries

– languages for writing them:
• standard relational algebra

• datalog (even without recursion)

• SQL (even without grouping / aggregation)

– monotone queries are a proper subset

– SFW queries (i.e., w/out subqueries) are monotone

• Given an English problem statement you should be able to
write a query in:

– Relational Algebra , Relational Calculus

– Datalog , SQL

CSE 344 - Summer 2017 7

Midterm Concept Review III
• types of indexes

– B+ tree vs hash
• hash indexes use at most 2 disk accesses

• B+ tree can be used for < predicates

• B+ tree index on (X,Y) also allows searching for X=a matches

– clustered vs non-clustered
• selectivity above 1-2% => not helped by non-clustered indexes

• cost-based query optimization
– consider choices over logical and physical query plans

• most important choice in latter is choice of join algoirthm

• those include nested loop, sorted merge, hash, and indexed joins

– primary goal of the optimizer is to avoid really bad plans

CSE 344 - Summer 2017 8

Today

CSE 344 - Summer 2017 9

• More Datalog

• Midterm Review

What is Datalog?

• Another query language for relational model
– Simple and elegant

– Initially designed for recursive queries

– Some companies use datalog for data analytics
• e.g. LogicBlox

– Increased interest due to recursive analytics

• We discuss only recursion-free or non-
recursive datalog and add negation

CSE 344 - Summer 2017 10

Why Do We Learn Datalog?

• Datalog can be translated to SQL
– Helps to express complex queries

• Increase in datalog interest due to recursive analytics

• A query language that is closest to mathematical logic
– Good language to reason about query properties

– Can show that:

1. Non-recursive datalog & RA have equivalent power

2. Recursive datalog is strictly more powerful than RA

3. Extended RA & SQL92 is strictly more powerful than datalog

CSE 344 - Summer 2017 11

Datalog vs Relational Algebra

• Every expression in standard relational algebra can
be expressed as a Datalog query

• But operations in the extended relational algebra
(grouping, aggregation, and sorting) have no
corresponding features in the version of datalog that
we discussed today

• Similarly, datalog can express recursion, which
relational algebra cannot

CSE 344 - Summer 2017 12

Datalog vs Relational Algebra

CSE 344 - Summer 2017 13

standard RA
extended

RA

datalog + neg
+ recursion

datalog + neg

grouping &
aggregation

Datalog with negation

CSE 344 - Summer 2017 14

A(x) :- Actor(x,_,_) Cast(x,m) Movie(m,_,1994)

Find all actors who only acted in 1994.

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

This is wrong.
Why?

nonAns(x) :- Actor(x,_,_) Cast(x,m) Movie(m,_,y),y!=1994

A(x) :- Actor(x,_,_) , not nonAns(x)

More Examples

Find all of Joe's friends who do not have any
friends except for Joe:

CSE 344 - Summer 2017 15

JoeFriends(x) :- Friend('Joe',x)

NonAns(x) :- Friend(y,x), y != ‘Joe’

A(x) :- JoeFriends(x), not NonAns(x)

Friend(name1, name2)

Enemy(name1, name2)

Datalog Summary
• facts (extensional relations - EDBs) and

rules (intensional relations - IDBs)
– rules can use relations, arithmetic, union, intersect, …

• As with SQL, existential quantifiers are easier
– use negation to handle universal

CSE 344 - Summer 2017 16

Using what we have learned

How to write a complex SQL query:

• Write it in RC

• Translate RC to datalog

• Translate datalog to SQL

Take shortcuts when you know what you’re doing

CSE 344 - Summer 2017 17

From RC to Datalog¬ to SQL

Q(x) = y. Likes(x, y) z.(Serves(z,y) Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

CSE 344 - Summer 2017 18

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Q(x) = y. Likes(x, y) z.(Serves(z,y) Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace with using de Morgan’s Laws

Q(x) = y. Likes(x, y) ¬ z.(Serves(z,y) ¬Frequents(x,z))

CSE 344 - Summer 2017 19

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀
∃

∀x P(x) same as
¬∃x ¬P(x)

∨
∧

¬(¬P∨Q) same as
P∧ ¬ Q

⇒
∨

P ⇒ Q same as
¬P ∨ Q

From RC to Datalog¬ to SQL

Q(x) = y. Likes(x, y) z.(Serves(z,y) Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace with using de Morgan’s Laws

Q(x) = y. Likes(x, y) ¬ z.(Serves(z,y) ¬Frequents(x,z))

CSE 344 - Summer 2017 20

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀
∃

∀x P(x) same as
¬∃x ¬P(x)

∨
∧

¬(¬P∨Q) same as
P∧ ¬ Q

⇒
∨

P ⇒ Q same as
¬P ∨ Q

Step 2: Make sure the query is domain independent
Q(x) = y. Likes(x, y) ¬ z.(Likes(x,y) Serves(z,y) ¬Frequents(x,z))

From RC to Datalog¬ to SQL

Step 3: Create a datalog rule for each subexpression;
(shortcut: only for “important” subexpressions)

Q(x) = y. Likes(x, y) ¬ z.(Likes(x,y) Serves(z,y) ¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

CSE 344 - Summer 2017 21

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE … …)

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

22

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Summer 2017

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Summer 2017

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE L2.drinker=L.drinker and L2.beer=L.beer

and L2.beer=S.beer
and not exists (SELECT * FROM Frequents F

WHERE F.drinker=L2.drinker
and F.bar=S.bar))

From RC to Datalog¬ to SQL

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Serves S
WHERE L.beer=S.beer

and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L.drinker

and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Unsafe rule

24

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Summer 2017

Summary: all these
formalisms are equivalent!

• We have seen these translations:
– RA  datalog¬

– RC  datalog¬

• Practice at home, and read Query Language
Primer:
– Nonrecursive datalog¬  RA

– RA  RC

• Summary:
– RA, RC, and non-recursive datalog¬ can express the same

class of queries, called Relational Queries

CSE 344 - Summer 2017 25

CSE 344 - Summer 2017 26

Query Optimizer Summary

• Input: A logical query plan

• Output: A good physical query plan

• Basic query optimization algorithm
– Enumerate alternative plans (logical and physical)

– Compute estimated cost of each plan
• Compute number of I/Os

• Optionally take into account other resources

– Choose plan with lowest cost

– This is called cost-based optimization

CSE 344 - Summer 2017

Cost of Join Algorithms
• Nested Loop

– B(R) + B(R)B(S)

• Nested Loop (with index)
– If index on S is clustered: B(R) + T(R)B(S)/V(S,A)

– If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)

• Hash Join
– B(R) + B(S)

– uses more disk space when B(R) > M

27

CSE 344 - Summer 2017 28

Review: Physical Query

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

We only care about Disk I/O operations

Supply (pno, sid, quanty)

Supplier (sid, sname ,scity, sstate)

CSE 344 - Summer 2017 29

Physical Query: Naive Plan

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

πsname(σscity=‘Seattle’ and sstate=‘WA’ and pno=2(Supplier Supply)

(File scan)
(File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 344 - Summer 2017 30

Physical Query: Naive Plan

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
 No additional cost.

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100
= 10,100 I/Os

CSE 344 - Summer 2017 31

Supplier Supply

sid = sid

1. σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

2. σpno=2

(Scan
write to T1)

Physical Query: Optimized
Total cost
(step 1)
100 + 100 * 1/20 * 1/10 ~= 100
(step 2)
100 + 100 * 1/2500 ~= 100
(step 3) 2
(step 4) 0

Total cost ≈ 204 I/Os

3.

4.

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

32

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’

πsname

(Index nested loop)

(Index on sid)
Clustering does not matter

(On the fly)

1. σpno=2

(Index on pno)
Assume: clustered

Physical Query: Using Indexes
Total cost
= 1 (or 2) (step 1.)
+ 4 (step 2.)
+ 0 (step 3.)
+ 0 (step 4.)

Total cost ≈ 5 I/Os (or 6)

(Use hash index)

2.

3.

4.

(On the fly)

10000*1/2500
= 4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

